ORIGINAL PAPER

AM1* parameters for cobalt and nickel

Hakan Kayi · Timothy Clark

Received: 20 February 2009 / Accepted: 18 March 2009 / Published online: 26 May 2009 © Springer-Verlag 2009

Abstract We report the parameterization of AM1* for the elements Co and Ni. The basis sets for both metals contain one set each of *s*-, *p*- and *d*-orbitals. AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, V, Cr, Co, Ni, Cu, Zn, Br, Zr, Mo and I. The performance and typical errors of AM1* are discussed for Co and Ni and compared with available NDDO Hamiltonians.

Keywords $AM1* \cdot Cobalt \text{ parameters} \cdot Nickel \text{ parameters} \cdot Semiempirical MO-theory}$

Introduction

AM1* [1–5] is an extension of AM1 [6] that uses *d*-orbitals for the elements P, S, Cl, [1] Al, Si, Ti and Zr, [2] Cu and Zn, [3] Br and I, [4] V and Cr [5]. The AM1* molybdenum parameters are a slight modification of Voityuk and Rösch's AM1(d) parameter set [7]. AM1* retains the original AM1 parameters for the elements H, C, N, O and F. The intention is to provide a technique that has the advantages of AM1 for first-row elements, such as good

Electronic supplementary material The online version of this article (doi:10.1007/s00894-009-0503-4) contains supplementary material, which is available to authorized users.

H. Kayi · T. Clark (🖂)

Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany e-mail: clark@chemie.uni-erlangen.de energies for hydrogen bonds, higher rotation barriers for π systems than MNDO [8, 9] or PM3 [10–12] but performs better for heavier elements and to be applicable to the first row transition metals. As a continuation of this work, we now report AM1* parameters for cobalt and nickel. Both cobalt and nickel are important in the chemistry of organometallic and biological catalysts [13, 14]. Because the experimental data for heats of formation of compounds of these two metals are relatively sparse, we have also used a series of model compounds whose heats of formation we have derived from DFT calculations [15].

Theory

AM1* for the two new elements uses the same basic theory as outlined previously [1, 2]. As for other element-H interactions, the core-core repulsion potential for the Co-H and Ni-H interactions used a distance-dependent term δ_{ij} , rather than the constant term used for core-core potentials for most other interactions in AM1* [1]. This distancedependent δ_{ij} was also used for the Mo-H and interaction in AM1(d) [7] and for Ti-H, V-H, Cr-H, Cu-H, Zn-H, Br-H, Zr-H, Mo-H and I-H in AM1* [2–5]. The core-core terms for Co-H and Ni-H are thus:

$$E^{core}(i-j) = Z_i Z_j \rho_{ss}^0 \left[1 + r_{ij} \delta_{ij} \exp\left(-\alpha_{ij} r_{ij}\right) \right]$$
(1)

where all terms have the same meaning as given in reference [1].

The standard MNDO/d formula is used for all other core-core interactions:

$$E^{core}(i-j) = Z_i Z_j \rho_{ss}^0 \left[1 + \delta_{ij} \exp\left(-\alpha_{ij} r_{ij}\right) \right].$$
⁽²⁾

The parameterization techniques were those reported in references [1, 2] and will not be described further here.

Parameterization data

The target values used for parameterization and their sources are defined in Table S1 of the Supplementary Material. We have used both reaction energies and heats of formation as we did for the Ti, Zr, Cu, Zn, Br, I, V and Cr parameterizations [2–5] and have also used a small series of model compounds whose heats of formation we have derived from DFT calculations. As before, [1–5] we checked that experimental values for heats of formation were reasonable using DFT calculations.

DFT calculations used the Gaussian 03 suite of programs [16] with the LANL2DZ basis set and standard effective core potentials [17–20] augmented by a set of polarization functions [21] (designated LANL2DZ+pol) and the B3LYP hybrid functional [22–24].

Experimental parameterization data for cobalt and nickel were taken largely from the NIST Webbook, [25] but also from the OpenMopac collection [26] and the other experimental and theoretical sources given in the Supplementary Material.

The energetic parameterization data and their sources are given in Table S1 of the Supplementary Material. In addition to the energetic data, geometries, dipole moments and ionization potentials taken from the above sources, crystal structures from the Cambridge Structural Database (CSD) [27] were used in the parameterization to ensure that not only the energetic and electronic properties for the "prototype" compounds, but also the structures of large cobalt and nickel compounds are well produced.

Results

The optimized AM1* parameters are shown in Table 1. Geometries were optimized with the new AM1* parameterization using VAMP 10.0, [28] while the PM5 calculations used LinMOPAC2.0 [29] and those with PM6 used MOPAC2007 [30]. The three programs give essentially identical results for the Hamiltonians that are available in all three.

Cobalt

Heats of formation

The calculated heats of formation for our training set of cobalt compounds are shown in Table 2. We have compared our results with Stewart's recently published PM6 method Table 1 AM1* parameters for the elements Co and Ni

-		
Parameter	Со	Ni
U _{ss} [eV]	-147.9969721	-47.9262400
U _{pp} [eV]	-75.4376929	-33.5123050
U _{dd} [eV]	-85.9948020	-92.9262050
$\zeta_{\rm s} [{\rm bohr}^{-1}]$	10.6559732	2.1694428
ζ_p [bohr ⁻¹]	31.1355546	2.0212614
ζ_d [bohr ⁻¹]	1.6662813	2.9999800
$\beta_{s} [eV]$	-94.1552039	-9.7800503
$\beta_p [eV]$	-126.5074725	-7.8215436
$\beta_d [eV]$	-15.8120720	-10.1277693
g _{ss} [eV]	5.7855014	4.0808760
g _{pp} [eV]	16.2498362	5.6217732
g _{sp} [eV]	10.4339713	6.0176787
g _{p2} [eV]	66.1182470	5.5014852
h _{sp} [eV]	2.9132649	2.1328830
z_{sn} [bohr ⁻¹]	2.2158238	0.7464700
z _{pn} [bohr ⁻¹]	1.4599934	0.4533270
z_{dn} [bohr ⁻¹]	1.4576614	1.4613450
$\rho(\text{core}) [\text{bohr}^{-1}]$	1.6385615	1.3878582
$\Delta H^{\circ}_{f}(atom) [kcal mol^{-1}]$	101.98	102.8
F_{sd}^{0} [eV]	7.9584630	4.6516640
$G_{sd}^2 [eV]$	6.6939630	1.8805020
α(ij)		
Н	3.7250884	3.9112954
С	3.3514488	3.0416771
Ν	3.2268224	3.3195694
0	3.9648169	2.6648814
F	4.7295078	2.8884516
Al	2.2854320	2.4006390
Si	2.5793441	3.8488001
Р	1.9571093	1.9182580
S	2.4315562	1.2619302
Cl	2.5666738	3.7009365
Ti	2.5672155	2.2550000
V	1.8037355	2.8635660
Cr	1.8441671	2.5326653
Co	2.9455643	3.5988970
Ni	3.5988970	2.3078430
Cu	2.0999846	2.4949800
Zn	2.5946347	2.9100500
Br	3.2938616	2.5296864
Zr	1.9076098	2.1815542
Мо	1.7152160	2.3116050
I	2.9718264	2.6608247
δ(ii)		
H	7.4149924	14.3720184
С	8.8159639	4.8355503
Ν	4.5514730	8.3058789
0	12.7561475	1.8194408
F	36.8730508	2.1280313

 Table 1 (continued)

Parameter	Со	Ni
Al	3.6287393	4.4492610
Si	3.6071357	37.3623757
Р	1.9376263	1.2970389
S	1.8108567	0.1685772
Cl	2.4236274	21.3405907
Ti	3.4060864	4.7044000
V	2.4096866	11.2551742
Cr	1.5174067	3.0903718
Со	18.3120000	35.4531600
Ni	35.4531600	2.4076920
Cu	0.8291495	3.5090000
Zn	1.3844244	4.1615000
Br	12.7590650	3.2087055
Zr	1.3523255	6.9245885
Мо	1.8055727	3.7298645
I	11.9594831	2.9999300

[31] and also unpublished PM5 method implemented in LinMopac [29].

AM1* reproduces the heats of formation of the training set of cobalt compounds used in parameterization better than either PM6 or PM5. The mean unsigned error (MUE) for the AM1* parameterization dataset is 20.5 kcal mol⁻¹, compared with 61.9 and 84.3 kcal mol⁻¹ for PM6 and PM5, respectively. PM6 produces large errors for the compounds that were not included in its original training set. The parameterization data set for PM5 has not been published, but clearly does not cover the range of compounds used for AM1*. All three methods tend to underestimate heats of formation to cobalt-containing compounds. However, this tendency is less pronounced for AM1* (mean signed error (MSE) -7.4 kcal mol⁻¹) than PM6 and PM5 (MSEs of -48.6 and -70.8 kcal mol⁻¹, respectively).

The largest single positive error for AM1* is found for Co⁺ (108.4 kcal mol⁻¹). This is potentially disturbing as the ionization potential of Co is an important determinant of the reactivity of cobalt centers. However, we cannot detect serious systematic trends caused by this error. Molecules that give the largest positive errors are C₁₀H₁₅NS₂CoI (GECVEP) (52.0 kcal mol⁻¹), CoC₉N₄H₁₉O₅ (AMGXCO01) (39.3 kcal mol⁻¹) and CoCl₂ (33.8 kcal mol⁻¹). The largest negative errors are found for Co(H₂O)₆²⁺ (-110.0 kcal mol⁻¹), CoO⁻ (-75.5 kcal mol⁻¹), CoOBr (-68.6 kcal mol⁻¹) and HCoPH₂ (-53.2 kcal mol⁻¹). The large negative errors with oxygen-containing compounds are not surprising as we have pointed out in our previous parameterizations [5].

AM1* uses the unchanged AM1 parameterization for the elements H, C, N, O and F, which limits the possible accuracy of the parameterization. In this respect, the heats of formation of $Co(H_2O)_6^{2+}$ and $Co(H_2O)_4^{4+}$ agree remarkably well with experiment considering the large AM1* errors for Co^{2+} and Co^{4+} (see below). As found for other metals, the large errors in pure AM1* element-containing compounds is likely to be a consequence of our sequential parameterization strategy, in contrast to the simultaneous parameterization used for PM6 [31].

Not only AM1* gives very large errors for cobalt di-, tri-, tetra- and penta-cations (not shown in Table 2 and not included in the statistics), but also PM6 and PM5. AM1* errors are found to be 143.0 kcal mol⁻¹ (-96.5 and 119.6 kcal mol⁻¹ for PM6 and PM5, respectively) for Co^{2+} , 131.8 kcal mol⁻¹ (-545.6 and -126.7 kcal mol⁻¹ for PM6 and PM5, respectively) for Co^{3+} , -56.8 kcal mol⁻¹ (-1356.1 and -335.6 kcal mol⁻¹ for PM6 and PM5, respectively) for Co^{4+} and -704.5 kcal mol⁻¹ (-2758.8 and -902.8 kcal mol⁻¹ for PM6 and PM5, respectively) for Co^{5+} . Experimental heats of formation of these cations are given in Table S1 of the Supplementary Material. Nonetheless, on aggregate AM1* performs better than the other available methods for the heats of formation of cobalt compounds.

Table 2, however, also shows the performance of the three methods for only the PM6 parameterization dataset [31]. These data demonstrate the influence of the extent of the training data. AM1* performs approximately equally well for its own training set and for the subset used to parameterize PM6, whereas PM6 performs significantly better for the subset for which it was trained. This situation is unavoidable and is a direct consequence of the relative paucity of data for parameterizing semiempirical MO techniques for transition metals.

Ionization potentials and dipole moments

A comparison of the calculated and experimental Koopmans' theorem ionization potentials and dipole moments for AM1*, PM6 and PM5 are shown in Table 3.

The performance of the three methods is comparable. The mean unsigned errors vary in a relatively small range from 0.99 (PM5) to 1.50 eV (PM6). The AM1* MUE, 1.23 eV, lies in the middle of this range. With an MSE of -0.16 eV, AM1* tends to underestimate ionization potentials slightly, whereas PM6 and PM5 overestimate them by 0.80 and 0.41 eV, respectively.

Large AM1* errors are found for $CoCl_2$ (-2.10 eV), CoCH₃ (1.88 eV), $CoC_{10}H_{10}$ (1.87 eV) and $Co_2(CO)_8$ (-1.54 eV). The large error for $CoCl_2$ may originate from a general weakness in the original chlorine parameterization, whereas the others may be an indirect result of using **Table 2** Calculated AM1*, PM6 and PM5 heats of formation and errors compared with our target values for the cobalt-containing compounds used to parameterize AM1* (all values kcal mol⁻¹). Errors are classified by coloring the boxes in which they appear. Green

indicates errors lower than 10 kcal mol⁻¹, yellow 10–20 kcal mol⁻¹ and pink those greater than 20 kcal mol⁻¹. The codenames within parentheses indicate the CSD-names of the compounds

	Target	Target AM1* I				Р	M5
Compound	ΔH° _f	ΔH° _f	Error	ΔH° _f	Error	ΔH° _f	Error
Co	86.2	83.3	-2.9	-84.2	-170.4	43.8	-42.4
Co	102.0	102.0	0.0	82.3	-19.7	91.4	-10.6
Co ⁺	281.5	389.9	108.4	304.1	22.6	292.6	11.1
Co ₂	183.5	179.5	-4.0	-72.1	-255.6	114.5	-69.0
Co ₂ ⁻	137.6	146.8	9.2	-263.1	-400.7	121.1	-16.5
HCo	102.8	79.0	-23.8	50.5	-52.3	14.8	-87.9
HCo ⁻	98.5	67.6	-30.9	-52.0	-150.5	16.9	-81.6
C₅H₅Co [−]	114.8	111.1	-3.7	10.0	-104.8	95.8	-19.0
CoC ₁₀ H ₁₀	73.9	72.1	-1.8	52.4	-21.5	72.2	-1.7
CoCp ₂ (DCYPCO)	52.0	72.2	20.2	51.2	-0.8	71.4	19.4
$CoC_6N_6H_{24}^{3+}$ (COTENC01)	587.5	587.8	0.3	557.2	-30.3	531.6	-55.9
$CoC_6N_6H_{24}^{2+}$ (QICSOK)	280.9	263.3	-17.6	284.9	4.0	228.4	-52.5
CoC ₉ N ₆ H ₁₅ (FEFRUD)	58.2	85.3	27.1	68.4	10.2	-24.8	-83.0
CoO ⁻	36.6	-38.9	-75.5	-130.2	-166.8	-81.4	-118.0
CoO_2^-	-34.0	-5.0	29.1	-57.7	-23.7	-109.1	-75.1
$Co_2(H_2O)_4^{4+}$	1052.6	1009.7	-42.8	857.5	-195.1	839.0	-213.5
$Co(H_2O)_6^{2+}$	58.3	-51.7	-110.0	36.0	-22.3	-19.0	-77.3
Co(CO) ₄	-134.3	-153.2	-18.9	-136.8	-2.5	-62.5	71.8
CoH(CO) ₄	-136.0	-147.2	-11.2	-114.1	21.9	-152.2	-16.2
$Co(CO)_5^+$	4.1	-39.8	-43.9	33.4	29.3	38.2	34.1
$CoC_6O_{12}^{3-}$ (Co(iii)(ox) ₃)	-542.2	-515.7	26.5	-532.3	9.9	-751.5	-209.3
$Co_2(CO)_8$	-283.0	-286.5	-3.5	-278.8	4.2	-253.6	29.4
$CoN_6H_{15}O_2^{2+}$ (FAMYEX)	252.3	211.0	-41.3	247.2	-5.1	254.2	1.9
$C_0C_6N_4H_{16}O_4^+$ (AETXCO)	-93.9	-71.5	22.4	-68.0	25.9	-153.2	-59.3
$C_0C_6N_4H_{16}O_4^+$ (OXENCO)	-96.0	-77.7	18.3	-74.8	21.2	-159.3	-63.3
$CoC_6N_6H_{18}O_4^+$ (NIXGEG)	27.9	26.3	-1.6	48.2	20.3	20.8	-7.1
CoC ₀ N₄H ₁₀ O ₅ (AMGXCO01)	-131.7	-92.4	39.3	-123.3	8.4	-158.5	-26.8
$CoC_eN_eH_{20}O_e^+$ (NITNCO)	-39.2	-39.7	-0.5	-21.5	17.7	-123.3	-84.1
CoOF	-70.8	-85.9	-15.1	-32.6	38.2	-128.8	-58.0
CoF ₂	-85.2	-85.2	0.0	-66.1	19.1	-85.4	-0.2
CoF ₃	-139.6	-180.7	-41.1	-137.1	2.5	-95.3	44.3
	-302.0	-297.9	4.1	-253.8	48.2	-238.7	63.3
CoAlH ₂	125.9	92.4	-33.6	33.8	-92.1	49.7	-76.2
HCoAlH ₂	160.3	131.7	-28.6	80.3	-80.0	10.6	-149.7
CoSiH ₃	109.6	97.1	-12.5	32.2	-77.3	41.2	-68.4
CoP	131.2	131.3	0.0	79.3	-51.9	41.8	-89.5
CoPH ₂	100.3	72.5	-27.8	17.0	-83.3	-127.9	-228.2
HCoPH ₂	111.1	57.9	-53.2	38.6	-72.6	-68.1	-179.3
CoS	117.5	83.7	-33.8	20.8	-96.7	117.4	-0.1
CoSH	82.7	81.6	-1.1	4.7	-78.0	90.8	8.1
HCoSH	87.4	61.6	-25.8	4.9	-82.5	19.9	-67.4
$C_0C_{10}H_{14}S_4$ (TACACO10)	-11.8	-1.9	9.9	-22.1	-10.3	-5.3	6.5
$C_0C_0H_{21}S_6$ (MEDTCO10)	-65.7	-105.0	-39.3	-65.2	0.5	-72.6	-6.9
CoC ₃ N ₃ H ₆ S ₆ (TDTCCO)	-24.9	-25.1	-0.2	-7.1	17.8	30.9	55.8
CoCl	46.1	45.6	-0.5	51.6	5.5	35.3	-10.8
CoClO	13.8	7.9	-5.9	0.3	-13.5	-44.5	-58.3
CoCl ₂	-22.4	11.4	33.8	10.1	32.5	-38.8	-16.4
	-39.1	-37.1	2.0	-24.5	14.6	-49.1	-10.0
Co ₂ Cl ₄	-83.8	-81.4	2.4	-89.7	-5.9	63.5	147.3
$CoC_4N_5H_{10}Cl^{2+}$ (ADETCO)	254.0	262.4	8.4	250.2	-3.8	224.5	-29.5
$Co(NH_3)_3(H_2O)_3CIF^+$	-104.6	-147.8	-43.2	-113.3	-8.7	-128.2	-23.6
$C_0C_0N_4H_0S_0Cl_2$ (COTUCI 11)	-61.2	-54.2	7.0	-99.5	-38.3	-83.5	-22.3
$C_0C_0N_2H_{17}Cl_2$ (AMPRCO)	-159.2	-150.9	8.3	-138.4	20.8	-214 5	-55.3
$CoC_4N_2H_{12}SCI_3$ (CATBAA)	-128.2	-118.7	9.5	-117.8	10.4	-159.5	-31.3

Table 2 (continued)

	Target	AM1*		PM6		PM5	
Compound	∆H° _f	∆H° _f	Error	ΔH° _f	Error	ΔH ° _f	Error
СоТі	116.0	116.0	0.0	66.4	-49.6	147.4	31.4
CoV	161.5	161.5	0.0	59.3	-102.2	-72.4	-233.9
CoCr	217.7	191.2	-26.5	89.3	-128.4	-347.4	-565.1
CoNi	108.1	108.2	0.1	1.4	-106.6	-118.0	-226.1
CoCu	143.1	141.8	-1.3	36.7	-106.4	-108.7	-251.9
HCoCu	150.9	150.9	0.0	79.2	-71.6	-127.7	-278.6
CoZn	124.6	114.3	-10.3	-158.1	-282.6	89.6	-34.9
HCoZn	121.4	91.7	-29.7	-78.0	-199.4	13.5	-107.9
CoBr	86.4	72.9	-13.5	61.0	-25.4	22.4	-64.0
CoOBr	19.9	-48.7	-68.6	17.6	-2.3	-129.4	-149.3
CoBr ₂	29.0	52.6	23.6	63.2	34.2	-94.6	-123.6
CoBr ₃	15.9	21.8	5.9	40.1	24.2	-149.5	-165.4
CoBr ₄	19.3	-10.6	-29.9	38.9	19.6	-196.7	-216.0
CoBr ₄ ^{2–}	-99.0	-100.3	-1.3	-169.9	-70.9	-286.5	-187.5
C ₄ H ₈ N ₄ O ₅ CoBr (BUKPIG)	-99.6	-80.2	19.4	-121.0	-21.4	-152.7	-53.1
CoZr	209.8	172.1	-37.7	-10.4	-220.3	133.7	-76.2
СоМо	285.3	285.4	0.1	75.6	-209.6	288.2	3.0
НСоМо	280.4	261.9	-18.5	83.3	-197.1	222.7	-57.7
Col	96.2	90.1	-6.2	49.9	-46.3	38.6	-57.6
ICoO	34.0	-2.7	-36.7	25.6	-8.4	-98.2	-132.2
Col ₃	19.5	42.7	23.2	38.1	18.6	-78.0	-97.5
Col ₄	39.0	40.0	0.9	-3.9	-42.9	-102.3	-141.3
C ₁₀ H ₁₅ NS ₂ Col (GECVEP)	-13.3	38.7	52.0	2.5	15.8	-71.7	-58.4
$C_4H_4N_4O_4Col_2^-$ (FIRCOY01)	-16.8	-29.3	-12.5	-15.6	1.2	-135.0	-118.2
		AM1 ³	*	PMe	5	PI	M5
N=78	_					1	
Most positive error		108.4	1	48.2	2	14	7.3
Most negative error		-110.0	0	-400	.7	-56	65.1
MSE		-7.4		-48.	6	-70.8	
MUE		20.5		61.9		84.3	
RMSD		30.4		98.1		12	1.8

Results for the PM6 parameterization set (N=42)

MSE	-2.0	2.0	-32.4
MUE	22.9	15.7	52.5
RMSD	34.3	19.3	69.5

the original AM1 parameters for hydrogen, carbon and oxygen.

AM1* and PM5 show positive systematic errors for the dipole moments of cobalt compounds, whereas PM6 with 0.03 Debye (MSE) shows no tendency to systematic errors. AM1* and PM5 overestimate dipole moments by 0.34 and 1.13 Debye (MSE), respectively. AM1* performs well, with an MUE of 0.69 Debye for the dipole moments of the training set of cobalt compounds. The largest AM1* errors are found for CoI (2.76 Debye) and CoBr (-1.77 Debye). These errors may be a consequence of our sequential parameterization strategy. The MUEs for PM6 and PM5 are found to be 1.03 and 1.76 Debye, respectively.

Geometries

Table 4 shows a comparison of AM1*, PM6 and PM5 results in reproducing the geometries of the cobalt-containing compounds.

AM1* and PM5 overestimate bond lengths to cobaltcontaining compounds systematically by 0.04 and 0.36 Å, respectively, whereas PM6 underestimates them by 0.03 Å. AM1*, with an MUE of 0.08 Å performs quite well for bond lengths, compared with MUEs of 0.16 Å and 0.51 Å for PM6 and PM5, respectively. On the other hand, PM6 (MUE=7.1°) performs slightly better than AM1* (MUE= 9.3°) and far better than PM5 (MUE=16.7°) for the bond

		AM1*		PM6		PM5	
Compound	Target		Error		Error	or Err	
Koopmans' Theorem Ionization Potentia	als for Cobalt Co	ompound	s (eV)				
CoCH ₃	7.00	8.88	1.88	9.57	2.57	9.01	2.01
CoC ₁₀ H ₁₀	5.55	7.42	1.87	7.08	1.53	7.94	2.39
Co(CO) ₄	8.30	7.98	-0.32	8.97	0.67	8.04	-0.26
Co ₂ (CO) ₈	8.30	6.76	-1.54	10.86	2.56	8.78	0.48
CoCl	8.90	8.78	-0.12	9.48	0.58	8.29	-0.61
CoCl ₂	10.70	8.60	-2.10	8.27	-2.43	9.78	-0.92
CoBr ₂	9.90	9.09	-0.81	10.05	0.15	9.67	-0.23
		AN	11*	PI	M6	PN	/15
N=7							
MSE		-0.	-0.16		0.80		41
MUE		1.2	1.23		1.50		99
Dipole Moments for Cobalt Compounds	(Debye)						
CoO [−]	1.07	1.42	0.35	3.72	2.65	3.61	2.54
Co(CO) ₄	0.25	0.54	0.29	0.02	-0.23	4.35	4.10
CoH(CO) ₄	0.42	1.18	0.76	0.61	0.19	0.95	0.53
Co ₂ (CO) ₈	1.23	1.23	0.00	0.23	-1.01	0.02	-1.21
CoOF	0.16	0.57	0.41	0.34	0.18	1.26	1.10
CoClO	0.93	1.31	0.38	0.81	-0.12	1.51	0.58
CoBr	3.65	1.88	-1.77	0.77	-2.88	5.67	2.02
CoBrO	1.81	1.98	0.17	3.44	1.63	1.33	-0.48
Col	2.32	5.08	2.76	1.58	-0.74	5.91	3.59
ColO	2.40	2.40	0.00	3.04	0.64	0.97	-1.43
		AM1*		PM6		PM5	
N=10							
MSE		0.3	34	0.0	03	1.13	
MUE		0.6	69	1.0	03	1.7	76

Table 3 Calculated AM1*, PM6 and PM5 Koopmans' theorem ionization potentials and dipole moments for cobalt-containing compounds. The errors are color coded as follows: green up to 0.5 eV or 0.5 Debye; yellow between 0.5 and 1.0; pink larger than 1.0

angles. In general, AM1* gives bond angles for cobaltcontaining that are on average 1.5° too small, whereas PM6 and PM5 give bond angles that are too large by 4.0° and 5.1° , respectively.

Nickel

Heats of formation

The results obtained for heats of formation of nickelcontaining compounds are shown in Table 5.

Table 5 shows that, for the training set used, AM1* reproduces heats of formation of nickel-containing compounds slightly better than PM6 and far better than PM5. The mean unsigned error between target and AM1*-calculated heats of formation is 21.5 kcal mol⁻¹. For PM6 and PM5, the MUEs are found 27.3 and 53.0 kcal mol⁻¹, respectively. AM1* and PM6 underestimate heats of formation to nickel compounds by 6.7 and 4.3 kcal mol⁻¹, respectively (MSEs). PM5 systematically predicts heats of formation to be too positive with a mean signed error of

21.0 kcal mol⁻¹. The largest positive errors for AM1* are found for the compounds $NiC_{11}N_2H_{21}S_2O_2^+$ (53.6 kcal mol^{-1}), Ni(H₂S)₄²⁺ (53.1 kcal mol⁻¹), NiH⁺ (50.6 kcal mol⁻¹), NiCO (48.0 kcal mol⁻¹) and nickel dimethylglyoxime (NiC₈N₄H₁₄O₄, NIMGLO01) (42.0 kcal mol⁻¹). The largest negative errors for AM1* are found for Ni(CN)₅³⁻ $(-108.4 \text{ kcal mol}^{-1})$, NiC₂N₃S₃²⁻ (CUSJUV) (-79.1 kcal mol^{-1}), Ni(CN)₄²⁻ (-73.7 kcal mol⁻¹). AM1* also gives negative errors for the chlorinated compounds NiCH₃Cl, NiCl₂O, cis- and trans-NiCl₂.(H₂O)₂ and cis- and trans-Ni $((CH_3)_2 S)_2Cl_2$ more than 30 kcal mol⁻¹. Large errors in AM1* are given by the compounds that contain original AM1 elements or AM1 elements with sulfur, and also from the chlorinated compounds. We attribute this to a weakness in the AM1* parameterization for chlorine and sulfur, and also general weakness of the original AM1 parameterization.

Once again, Table 5 shows the results obtained with the three methods for the PM6 training set [31]. AM1* systematically gives heats of formation that are too negative ($MSE=-12 \text{ kcal mol}^{-1}$), but otherwise performs similarly for the PM6 subset and the complete dataset. PM6 clearly

Table 4 Calculated AM1*, PM6, and PM5 bond lengths and anglesfor cobalt-containing compounds. The codenames within parenthesesindicate the CSD-names of the compounds. The errors are color coded

as follows: green up to 0.05 Å or 0.5°; yellow between 0.05–0.1 Å or 0.5–1.0°; pink larger than 0.1 Å or 1°

			AN	11*	PI	//6	PN	Л5
Compound	Variable	Target		Error		Error		Error
	Co-Co	2.30	2.45	0.15	2.07	-0.23	2.11	-0.19
Co_{α}^{-}	Co-Co	2.63	2 56	-0.08	2 10	-0.53	2 26	-0.37
	Co-H	1 55	1 50	0.04	1 71	0.00	1 40	-0.15
		1.55	1.00	0.04	0.00	0.10	1.40	-0.13
	C0-H	1.00	1.02	-0.04	2.20	0.54	1.44	-0.23
	0-0	1.93	2.00	0.07	2.07	0.14	2.27	0.34
Co(Cp ₂ (DCYPCO)	Co-C	2.08	2.26	0.18	2.08	0.00	2.52	0.44
Co(CN)4 ⁺	Co-C	1.81	2.00	0.19	1.77	-0.04	2.08	0.27
	C-N	1.20	1.16	-0.04	1.16	-0.04	1.16	-0.04
$Co(CN)_6^{3-}$	Co-C	1.97	1.99	0.02	1.93	-0.04	2.16	0.19
$CoC_6N_6H_{24}$ (Co(II)(en) ₃)	Co-N	2.06	2.10	0.04	2.02	-0.04	2.21	0.15
$C_0C_6N_6H_{24}^{3+}$ (COTENC01)	Co-N	2.00	2.00	0.00	2.01	0.01	2.21	0.21
	N-Co-N	90.2	93.7	3.5	87.9	-2.3	81.4	-8.8
$C_0 C_0 N_0 H_0 x^{2+} (O CSOK)$	Co-N	2 20	2 11	-0.09	2 24	0.04	2.26	0.06
	N-Co-N	78.7	83.3	4.7	85.5	6.8	80.8	2 1
		70.7	00.0	0.01	00.0	0.0	00.0	0.00
$OOO_9 N_6 \Pi_{15} (FEFROD)$		2.01	2.00	-0.01	2.00	0.05	2.23	0.22
	N-CO-N	90.3	92.5	2.2	92.1	1.8	92.0	1./
	0-0	1.89	2.05	0.16	1.84	-0.05	2.11	0.22
CoO	Co=O	1.65	1.72	0.06	1.78	0.12	1.53	-0.13
CoO ₂ ⁻	Co=O	1.68	1.81	0.13	1.79	0.11	1.61	-0.07
$Co(H_2O)_4^{2+}$	Co-O	1.94	1.93	-0.02	1.91	-0.03	2.07	0.13
$Co(H_2O)_6^{3+}$	Co-O	2.03	1.94	-0.09	1.99	-0.04	1.99	-0.04
$Co_2(H_2O)_4^{4+}$	Co-O	2.17	1.96	-0.21	1.92	-0.25	1.95	-0.22
$C_0(H_2O)_6^{2+}$ (NAZVOZ)	Co-O	2.06	1.97	-0.09	1.88	-0.18	1.52	-0.54
	Co-O'	2.12	2.02	-0.10	1.87	-0.25	2.23	0.11
$C_0(H_0O)^{2+}$	Co-O	2 12	1 96	-0.16	1 99	-0.13	2 11	-0.02
00(1120)6	Co-O'	1.96	1.00	-0.01	2.01	0.10	2.11	0.02
$C_{\alpha}(C_{\alpha})$	Co C	1.50	1.00	0.01	1.00	0.00	2.03	0.10
$C_{0}(CO)_{4}$	C0-C	1.00	1.09	0.04	1.90	0.15	2.10	0.00
	0-0	1.75	1.95	0.20	1.90	0.15	2.04	0.29
CoH(CO) ₄	Co-H	1.55	1.62	0.06	1.70	0.14	1.39	-0.17
	Co-C	1.81	1.90	0.09	1.83	0.02	2.02	0.21
$Co(CO)_5^+$	Co-C(eq)	1.83	2.00	0.17	1.82	-0.01	2.07	0.24
_	Co-C(ax)	1.89	1.92	0.03	1.82	-0.07	2.92	1.03
$CoC_6O_{12}^{3-}$ (Co(iii)(ox) ₃)	Co-O	1.95	1.95	0.00	1.98	0.03	2.00	0.05
$Co_2(CO)_8$	Co-Co	2.47	3.08	0.61	2.47	0.00	3.50	1.03
Co(CO) ₃ NO	Co-C	1.81	1.94	0.13	2.14	0.33	2.04	0.23
	C-Co-C	103.2	85.9	-17.3	81.0	-22.2	93.1	-10.2
	Co-N	1.67	1.74	0.07	1.60	-0.07	1.93	0.26
$C_{O}(NO_{-})$	Co-O	1.89	1.84	-0.05	1.88	-0.01	2 10	0.30
00(1103)3		68.0	65.2	0.00	71.1	2 1	176.0	109.0
	0-00-0	00.0	00.0	-2.7	00.6	5.1	170.0	100.0
$O_{-}N_{+}U_{-}O_{-}^{2+}$	0-00-0	93.0	90.0	0.0	90.0	0.0	00.0	-0.2
$CON_6H_{15}O_2$ (FAMIYEX)	Co-N(O2)	1.95	1.91	-0.04	1.79	-0.16	2.09	0.14
	Co-N(H3)	1.96	2.08	0.12	2.03	0.07	2.20	0.24
	N-Co-N	90.0	92.9	2.9	89.0	-1.0	88.8	-1.2
$CoC_6N_4H_{16}O_4^+$ (OXENCO)	Co-N	1.98	2.04	0.06	1.98	0.00	2.30	0.32
	N-Co-N	86.0	85.3	-0.7	89.7	3.6	81.2	-4.8
	Co-O	1.94	1.92	-0.02	1.95	0.01	1.91	-0.03
$C_0C_6N_4H_{16}O_4^+$ (AETXCO)	Co-O	1.92	1.90	-0.02	1.93	0.01	1.91	-0.01
· · · · · · · · · · · · · · · · · · ·	O-Co-O	84.8	84.3	-0.5	87.8	3.0	85.9	1.1
	Co-N(H2C)	1 98	2 05	0.07	1 96	-0.02	2 21	0.23
	Co-N(H3)	1 05	2.00	0.07	2 00	0.02	2.21	0.20
		1.00	2.04	0.09	1.04	0.00	2.21	0.02
		1.92	2.07	0.15	1.94	0.02	2.23	0.31
$000_6 N_6 \Pi_{18} O_4$ (NIAGEG)		1.90	2.11	0.15	1.90	0.00	2.20	0.24
	CO-IN(CH2)	1.96	2.09	0.13	2.04	80.0	2.20	0.24
	N-Co-N	86.8	87.7	0.9	85.4	-1.4	90.7	3.9
	Co-N(O2)	1.99	2.01	0.02	1.87	-0.12	2.13	0.14
	Co-N(O2)	1.93	1.90	-0.03	1.83	-0.10	2.08	0.15
CoC ₉ N ₄ H ₁₉ O ₅ (AMGXCO01)	Co-N	1.89	1.99	0.10	1.88	-0.01	2.12	0.23

Table 4 (continued)

			AN	11*	PN	/16	PM5	
Compound	Variable	Target		Error		Error		Error
	N-Co-N	82.0	82.1	0.1	82.8	0.8	74.5	-7.5
	Co-C	1.98	2.04	0.06	2.01	0.03	2.15	0.17
	Co-O	2.06	2.03	-0.03	2.21	0.15	2.16	0.10
CoC15H21O6 (Co(II)(Acac)2(-) IKEYAY)	Co-O	2.06	1.95	-0.11	2.12	0.06	1.97	-0.09
	0-Co-O	88.0	87.0	-0.9	101 1	13.1	94.0	61
	Co-N	2 00	2 01	0.01	1 99	-0.01	2 23	0.1
		2.00	2.01	1.0	80.0	1.2	05.0	7.2
		1.00	1 07	0.02	1 00	0.00	1 01	0.01
CoF		1.90	1.07	-0.03	1.99	0.09	1.91	0.01
		1.91	1.91	0.00	1.84	-0.07	1.91	0.00
COUF	0=0	1.59	1.63	0.04	1.57	-0.02	1.44	-0.15
	Co-F	1.72	1.72	0.00	1.68	-0.04	1.53	-0.20
CoF ₂	Co-F	1.72	1.76	0.04	1.70	-0.02	1.55	-0.17
CoF ₃	Co-F	1.72	1.72	0.00	1.76	0.04	1.76	0.04
	F-Co-F	108.5	147.4	39.0	119.8	11.3	143.1	34.7
CoF ₄ ⁻	Co-F	1.79	1.81	0.02	1.75	-0.04	1.85	0.06
CoAlH ₂	Co-Al	2.40	2.37	-0.03	2.28	-0.12	2.40	0.00
HCoAlH ₂	Co-Al	2.53	2.57	0.04	2.29	-0.24	2.36	-0.16
CoSiH ₃	Co-Si	2.33	2.33	0.00	2.50	0.17	2.30	-0.02
$CoSiC_4O_4F_3$ (FUZMAO)	Co-Si	2.23	2.46	0.23	2.23	0.00	2.27	0.04
	Si-F	1.50	1.71	0.21	1.56	0.06	1.59	0.09
	F-Si-Co	114.8	116.6	1.8	107.5	-7.3	117.2	24
	Co-C	1 79	1 91	0.12	1 82	0.03	2 15	0.36
	C-0	1.70	1 18	0.12	1 13	0.00	1 15	0.00
CoP	CozP	0.16	0.00	0.07	2.04	0.02	1.15	0.00
	Co P	2.10	2.20	0.11	2.04	-0.13	1.07	-0.29
	CO-P	2.20	2.31	0.04	2.10	-0.16	1.91	-0.30
	Co-P	2.32	2.34	0.02	2.26	-0.06	1.96	-0.36
Cos	Co=S	2.01	2.05	0.04	1.70	-0.31	1.96	-0.06
COSH	Co-S	2.16	1.99	-0.17	1.91	-0.25	2.45	0.29
HCoSH	Co-S	2.23	2.24	0.01	2.01	-0.23	2.28	0.05
$CoC_{10}H_{14}S_4$ (TACACO10)	Co-S	2.17	2.18	0.01	2.13	-0.04	2.51	0.34
	S-Co-S	96.9	91.9	-4.9	94.8	-2.0	82.9	-14.0
CoC ₉ H ₂₁ S ₆ (MEDTCO10)	Co-S	2.30	2.42	0.12	2.27	-0.03	2.68	0.38
	S-Co-S	89.8	50.2	-39.6	90.7	0.9	82.4	-7.4
CoC ₃ N ₃ H ₆ S ₆ (TDTCCO)	Co-S	2.29	2.32	0.03	2.26	-0.03	2.56	0.27
	S-Co-S	76.3	74.2	-2.2	79.9	3.5	69.2	-7.1
CoCl	Co-Cl	2.07	2.02	-0.05	1.96	-0.11	1.97	-0.10
CoCIO	Co=O	1.61	1.73	0.12	1.59	-0.02	1.56	-0.05
	Co-Cl	2.07	2.34	0.27	1.82	-0.25	2.15	0.08
CoCl	Co-Cl	2.11	2.07	-0.04	1.98	-0.12	2.07	-0.04
CoCl	Co-Cl	2.13	2.12	0.00	2.10	-0.03	2.06	-0.06
$C_0 C L^{2-}$ (DMDPCO)	Co-Cl	2.25	2.29	0.04	2.31	0.06	2.14	-0.11
	Co-Cl	2 12	2.09	-0.04	2.01	-0.11	2.03	-0.09
002014		2.12	2.00	0.04	2.01	0.17	2.00	0.00
		1 72	1 92	0.01	2.04	-0.17	2.10	-0.04
	C0-0	1.73	0.06	0.09	1.70	0.05	0.00	-0.07
		1.91	2.00	0.15	1.07	-0.04	2.00	0.17
0.0 N U 0^{2+} (ADET00)		2.10	2.15	0.05	2.08	-0.02	2.23	0.13
$CoC_4N_5H_{19}CI^{-1}$ (ADETCO)		2.28	2.16	-0.12	2.29	0.01	2.27	-0.01
	Co-N(H3)	1.97	2.07	0.10	2.02	0.05	2.18	0.21
	N-Co-Cl	87.7	87.9	0.2	83.9	-3.8	86.2	-1.5
	Co-N(C2H)	1.94	2.14	0.20	1.93	-0.01	2.17	0.23
	N-Co-N	94.3	90.9	-3.4	93.7	-0.6	96.8	2.5
	Co-N(H2C)	1.99	2.07	0.08	1.98	-0.01	2.20	0.21
$Co(NH_3)_2(H_2O)_2CIF^+$	Co-Cl	2.23	2.16	-0.07	2.30	0.07	2.30	0.06
	Co-N	1.97	2.08	0.11	1.96	-0.01	2.15	0.18
	Co-F	1.85	1.81	-0.04	1.84	-0.01	1.84	-0.01
	Co-O	1.97	2.01	0.04	2.00	0.03	2.00	0.03
	Co-Cl	2.22	2.32	0.10	2.38	0.16	2.36	0.14
J J ZI - \/								

Table 4 (continued)

			AM1*		PM6		PM5	
Compound	Variable	Target		Error		Error		Error
	Co-P	2.24	2.26	0.02	2.28	0.04	2.00	-0.24
	CI-Co-P	113.8	82.8	-31.0	167.6	53.8	169.9	56.1
CoC ₂ N ₄ H ₈ S ₂ Cl ₂ (COTUCL11)	Co-Cl	2.26	2.15	-0.11	2.29	0.03	2.32	0.06
	Co-Cl'	2.27	2.23	-0.04	2.44	0.17	2.33	0.06
	CI-Co-Cl	107.7	74.2	-33.5	105.3	-2.4	90.7	-17.1
	Co-S	2.30	2.38	0.08	2.11	-0.19	2.66	0.36
	Co-C	3.31	3.32	0.01	3.15	-0.16	3.41	0.10
CoC ₆ N ₃ H ₁₇ Cl ₃ (AMPRCO)	Co-Cl	2.24	2.10	-0.14	2.30	0.06	2.31	0.07
	Co-Cl'	2.31	2.18	-0.13	2.36	0.05	2.35	0.04
	CI-Co-CI	91.2	90.8	-0.4	93.7	2.5	92.3	1.1
	Co-N	1.97	2.09	0.12	1.95	-0.02	2.16	0.19
CoC ₄ N ₂ H ₁₂ SCI ₃ (CATBAA)	Co-Cl	2.28	2.21	-0.07	2.32	0.04	2.29	0.01
	CI-Co-CI	91.7	86.4	-5.4	98.4	6.6	98.4	6.7
	Co-N	1.93	2.11	0.18	1.95	0.02	2.20	0.27
	Co-S	2.22	2.47	0.25	2.02	-0.20	2.78	0.56
СоТі	Co-Ti	2.35	2.35	0.00	2.50	0.15	36.49	34.14
CoV	Co-V	2.34	2.36	0.02	2.56	0.22	1.62	-0.72
CoCr	Co-Cr	2.35	2.35	0.00	2.79	0.44	1.29	-1.05
CoNi	Co-Ni	2.38	2.38	0.00	2.49	0.10	1.28	-1.10
CoCu	Co-Cu	2.29	2.33	0.04	2.59	0.29	1.69	-0.61
HCoCu	Co-Cu	2.35	2.35	0.00	2.60	0.26	1.70	-0.65
CoZn	Co-Zn	2.54	2.49	-0.06	1.89	-0.65	2.55	0.00
HCoZn	Co-Zn	2.49	2.49	0.00	2.03	-0.46	2.41	-0.08
CoBr	Co-Br	2.21	2.23	0.02	2.00	-0.21	2.26	0.05
BrCoO	Co=O	1.60	1.62	0.02	1.60	0.00	1.36	-0.24
	Co-Br	2.19	2.27	0.08	1.63	-0.56	2.08	-0.11
CoBr ₂	Co-Br	2.27	2.31	0.04	2.01	-0.25	2.17	-0.10
CoBr ₃	Co-Br	2.28	2.28	0.00	2.44	0.15	2.11	-0.17
CoBr ₄	Co-Br	2.43	2.33	-0.10	2.25	-0.18	2.27	-0.16
CoBr ₄ ²⁻	Co-Br	2.40	2.45	0.05	2.70	0.30	2.43	0.03
C₄H ₈ N₄O₅CoBr (BUKPIG)	Co-Br	2.36	2.40	0.04	2.14	-0.22	2.35	-0.01
	Co-O	1.96	2.06	0.10	2.11	0.15	2.07	0.11
	Co-N	1.91	1.98	0.07	1.85	-0.06	2.16	0.25
CoZr	Co-Zr	2.16	2.16	0.00	2.47	0.31	3.28	1.12
СоМо	Co-Mo	2.33	2.33	0.00	2.23	-0.11	10.82	8.49
Col ₂	Co-I	2.57	2.51	-0.06	1.73	-0.84	2.39	-0.19
	Co-I	2.61	2.68	0.07	1.63	-0.98	2.44	-0.17
Col	Co-I	2.39	2.44	0.05	1.66	-0.73	2.37	-0.02
ICoO	Co=O	1.60	1.62	0.02	1.60	0.00	1.37	-0.23
	Co-I	2.40	2.49	0.09	1.67	-0.73	2.24	-0.16
C ₁₀ H ₁₅ NS ₂ Col (GECVEP)	Co-I	2.60	2.61	0.01	2.96	0.36	2.82	0.22
	Co-S	2.25	2.40	0.15	2.17	-0.08	2.60	0.35
	I-Co-S	95.6	92.2	-3.3	96.5	1.0	58.5	-37.1
	S-Co-S	76.5	70.4	-6.1	77.6	1.0	48.9	-27.6
$C_4H_4N_4O_4Col_2^-$ (FIRCOY01)	Co-I	2.58	2.57	-0.01	3.31	0.73	2.67	0.09
	Co-N	1.88	2.01	0.13	1.90	0.02	2.14	0.26
Col ₃	Co-I	2.42	2.48	0.06	4.13	1.71	2.36	-0.06
CoCH ₃ ICI	Co-I	2.47	2.53	0.06	1.68	-0.79	2.55	0.07
	Co-C	1.95	2.07	0.12	1.89	-0.06	1.91	-0.04
	Co-Cl	2.14	2.13	-0.01	2.11	-0.03	2.17	0.03
	C-Co-I	101.5	120.1	18.7	109.9	8.4	90.2	-11.3
	C-Co-Cl	97.1	124.4	27.3	125.2	28.1	168.4	71.3
			AN	11*	PI	/16	PN	15
<i>N=138</i> MSE bond length			0.0	14	-0	03	0.0	36
MUE bond length			0.0	08	0.1	16	0.5	51
N=28 MSE bond angle			1	5	Λ	0	F	1
MUE bond angle			-1.	3	4.	1	5. 16	.7

Table 5 Calculated AM1*, PM6, and PM5 heats of formation and errors compared with our target values for the nickel-containing compounds used to parameterize AM1* (all values kcal mol^{-1}). Errors are classified by coloring the boxes in which they appear. Green

indicates errors lower than 10 kcal mol⁻¹. yellow 10–20 kcal mol⁻¹ and pink those greater than 20 kcal mol⁻¹. The codenames within parentheses indicate the CSD-names of the compounds

	Target AM1* PM6		PM6		PN	PM5		
Compound	$\Delta \dot{\mathbf{H}}_{\mathbf{f}}$	$\Delta \mathbf{H}_{\mathbf{f}}^{\circ}$	Error	$\Delta \mathbf{H}_{\mathbf{f}}^{\circ}$	Error	$\Delta \mathbf{H}_{\mathbf{f}}^{*}$	Error	
Ni	102.8	102.8	0.0	93.5	-9.3	102.8	0.0	
Nī	76.0	65.3	-10.8	20.2	-55.8	21.8	-54.2	
Ni ⁺	276.7	281.8	5.1	266.1	-10.6	319.5	42.8	
Ni ²⁺	697.2	694.9	-2.3	685.2	-12.0	760.9	63.7	
Ni ²	128.6	87.1	-41.6	49.4	-79.2	148.6	20.0	
Ni2 ⁺	428.3	371.6	-56.7	127.7	-300.6	413.7	-14.6	
NiH	85.6	85.0	-0.6	87.0	14	175.6	90.0	
NiH ⁺	254 5	305.0	50.6	292.5	38.0	394.9	140 5	
NiHa	83.5	65.0	-18.5	133.1	49.6	231.0	147.5	
NiHa	36.1	36.1	0.0	54 1	18.0	160.4	124.3	
Ni(C-H-)-	79.7	87.4	77	61.1	-18.7	17.8	-61.0	
$Ni_{(05115)2}$	- 27.0	12.0	30.0	-20.0	6.1	-95.6	-68.6	
	- 27.0	12.9	10.0	-20.8	11.0	-95.0	-00.0	
	33.1	10.7	40.0	23.2	-11.9	04.4	29.0	
	17.2	-18.7	-35.9	-0.9	-10.1	-22.1	-39.3	
$NI(CO)_2$	-39.0	-3.4	35.6	-50.1	-11.1	-12.2	26.8	
NI(CO) ₂	-53.0	-88.7	-35.7	-65.0	-12.0	-56.4	-3.4	
	-93.0	-80.5	12.5	-80.0	13.0	-78.9	14.1	
Ni(CO) ₃	-118.8	-150.1	-31.3	-106.9	11.9	-169.6	-50.8	
Ni(CO) ₄	-144.0	-142.2	1.8	-107.1	36.9	-143.6	0.4	
NiO	75.0	85.4	10.4	154.0	79.0	71.8	-3.2	
NiO	41.1	20.1	-21.0	44.3	3.2	-21.1	-62.2	
NiO ₂ ⁻	-28.3	-28.5	-0.2	15.3	43.6	-51.3	-23.0	
$Ni(OH)_2.(H_2O)_2$ cis	-180.9	-201.9	-21.0	-174.5	6.4	-210.2	-29.3	
$Ni(OH)_2.(H_2O)_2$ trans	-177.6	-211.1	-33.5	-165.3	12.3	-218.1	-40.5	
$Ni(OH).(H_2O)_3^+$	-36.3	-29.5	6.8	-31.2	5.1	-36.0	0.3	
$Ni(H_2O)_4^{2+}$	221.9	214.7	-7.2	207.4	-14.5	217.1	-4.8	
$Ni(H_2O)_6^{2+}$	55.7	54.9	-0.9	45.9	-9.8	11.1	-44.6	
NiH ₁₂ O ₆ ²⁺ (JERNID)	54.4	55.2	0.8	49.0	-5.4	11.1	-43.3	
Ni(NH ₂) ₂	39.4	37.1	-2.3	85.1	45.7	187.9	148.6	
$Ni(NH_3)_4^{2+}$	319.5	325.0	5.5	309.3	-10.2	587.0	267.5	
$Ni(NH_3)_6^{2+}$	271.4	266.6	-4.8	268.3	-3.1	485.8	214.4	
Ni(CN) ₄ ²⁻	99.1	25.4	-73.7	57.8	-41.3	26.3	-72.8	
Ni(CN) ₅ ³⁻	258.9	150.5	-108.4	290.3	31.4	145.6	-113.3	
Ni(CO) ₃ NO	-89.0	-90.8	-1.8	-77.9	11.1	-82.8	6.2	
$NiC_8N_4H_{14}O_4$ (NIMGLO10)	- 37.1	4.9	42.0	-58.3	-21.2	81.4	118.5	
$NiC_{10}N_2H_{12}O_8$ (Ni-EDTA)	-361.5	-374.3	-12.8	-402.2	-40.7	-520.8	-159.3	
NiC ₁₃ NH ₁₇ O ₄ (VAXSUI)	- 142.3	-137.7	4.6	-94.2	48.1	-154.7	-12.4	
NiF	17.5	6.5	-11.0	51.1	33.6	4.9	-12.6	
NiF ₂	-115.5	-89.4	26.1	-65.2	50.3	-71.9	43.6	
NiF4 ²⁻	-211.5	-261.2	-49.7	-212.7	-1.2	-330.9	-119.4	
NiCH_F	-8.3	-35.6	-27.3	-11.5	-32	-4.3	4.0	
NiOF	- 50.8	-35.4	15.4	-47.2	3.6	-53.4	-2.6	
NiE_{0} (H ₀ O) ₀ cis	-214.2	-213.9	0.3	-202.0	12.2	-188 1	26.1	
NiF_{2} ($H_{2}O)_{2}$ cis	-214.2	-220.5	-1 1	-202.0	22.0	-100.1	20.1	
	-215.4	-220.J 80.1	32.0	-137. -	22.0	1/0 3	20. 4 84.2	
	101.2	106 5	1/ 0	150.1	27.0	244.6	102.2	
	121.0	100.5 52 0	10.0	61 5	10.0	244.0 100 0	120.0 20.6	
	41.0	55.9 70 7	-24.0	120.2	19.0	122.2 226 0	109.0	
	90.0 50.7	13.1	-24.9	109.0	40.7	220.0	120.2	
	DU.7	°∠.8	12.1	20.0	-22.1	90.7	40.0	
	-953.4	-953.4	0.0	-902.4	-9.0	-959.3	-5.9	
	85.4	85.4	0.0	/8.6	-6.8	114.2	28.8	
NISH	20.0	35.6	15.6	47.4	27.4	79.0	59.1	

Table 5 (continued)

	Target	AM1*		PI	M6	PM5	
Compound	$\Delta \mathbf{H}_{\mathbf{f}}^{*}$	$\Delta \mathbf{H}^{\circ}_{\mathbf{f}}$	Error	$\Delta \mathbf{H}^{\circ}_{\mathbf{f}}$	Error	$\Delta \mathbf{H}_{\mathbf{f}}^{\circ}$	Error
NiSH ₂	36.4	28.0	-8.4	78.0	41.6	105.7	69.3
$Ni(H_2S)_4^{2+}$	384.0	437.1	53.1	300.0	-84.0	449.3	65.3
$NiC_2N_3S_3^{2-}$ (CUSJUV)	62.9	-16.2	-79.1	39.4	-23.5	14.3	-48.6
$NiC_4S_4O4^{2-}$ (TOXNIA)	-217.9	-228.9	-11.0	-192.6	25.3	-271.2	-53.3
$NiC_8N_4S_4^-$ (TROPNJ)	92.8	46.2	-46.6	122.2	29.4	84.4	-8.4
NiC ₈ N ₂ H ₁₄ S ₂ (BAEINI)	12.2	-20.3	-32.5	9.8	-2.4	30.8	18.6
$NiC_{10}N_2H_{20}S_6$ (ZOTVUZ)	6.4	29.8	23.4	10.4	4.0	33.9	27.5
$NiC_{11}N_2H_{21}S_2O_2^+$ (Square, 2S and 2N)	72.1	125.7	53.6	96.7	24.6	149.1	77.0
$Ni(N_2S_2H)_2$	95.3	62.9	-32.4	117.1	21.8	200.4	105.1
$Ni((CH_3)_2S)_2F_2$ cis	-153.5	-130.9	22.6	-135.2	18.3	-158.8	-5.3
$Ni((CH_3)_2S)_2F_2$ trans	-162.5	-131.4	31.1	-159.3	3.2	-150.2	12.3
NiCl	43.5	45.6	2.1	69.7	26.2	63.6	20.1
NiCl ₂	-17.7	-17.2	0.5	-18.3	-0.6	19.0	36.6
NiCl ₄ ^{2–}	-130.1	-133.3	-3.2	-130.6	-0.5	-116.8	13.3
NiCH ₃ CI	37.2	2.6	-34.6	18.9	-18.3	58.4	21.2
NiCl ₂ O	-0.5	-43.8	-43.3	13.0	13.5	61.3	61.8
NiCl ₃ .H ₂ O ⁻	-188.1	-190.0	-1.9	-197.2	-9.1	-212.4	-24.3
NiCl. $(H_2O)_3^+$	-19.4	-38.3	-18.9	-20.9	-1.5	-14.4	5.0
NiCl ₂ .(H ₂ O) ₂ cis	-150.9	-199.2	-48.3	-156.6	-5.7	-146.9	4.0
$NiCl_2.(H_2O)_2$ trans	-155.3	-199.2	-43.9	-159.0	-3.7	-165.4	-10.1
Ni((CH ₃) ₂ S) ₂ Cl ₂ cis	-89.2	-136.9	-47.7	-71.8	17.4	-55.7	33.5
$Ni((CH_3)_2S)_2Cl_2$ trans	-96.4	-131.6	-35.2	-79.7	16.7	-70.2	26.2
NiTi	211.0	172.5	-38.5	137.6	-73.4	281.0	69.9
NiV	132.9	132.8	-0.1	141.2	8.3	188.0	55.1
NiCr	105.4	99.4	-6.1	149.7	44.3	-94.1	-199.5
NiCu	137.7	137.7	0.0	122.8	-14.8	78.1	-59.5
NiZn	151.2	147.0	-4.3	-8.0	-159.3	166.1	14.8
NiBr	57.8	68.6	10.8	27.2	-30.6	63.6	5.8
NiBr ₂	52.9	76.2	23.3	14.1	-38.8	49.5	-3.4
NiCH ₃ Br	24.6	12.1	-12.5	23.3	-1.3	45.9	21.3
Ni((CH ₃) ₂ S) ₂ Br ₂ cis	-70.8	-39.9	30.9	-57.3	13.5	-45.7	25.1
Ni((CH ₃) ₂ S) ₂ Br ₂ trans	-77.1	-53.2	23.9	-60.5	16.6	-59.7	17.4
NiC ₈ N ₂ H ₂₀ S ₃ Br ⁺ (BRUCUB)	75.1	60.9	-14.2	64.8	-10.3	124.2	49.1
NiZr	218.3	179.5	-38.8	120.5	-97.8	340.6	122.3
NiMo	296.6	296.6	0.0	227.3	-69.3	423.0	126.4
Nil	62.3	60.4	-1.9	26.1	-36.2	89.3	27.0
Nil ₂	36.5	46.8	10.3	15.0	-21.5	86.6	50.1
NiCH ₃ I	37.0	42.7	5.7	29.2	-7.8	86.0	49.0
$Ni((CH_3)_2S)_2I_2$ cis	-42.3	-72.0	-29.7	-31.1	11.2	-12.8	29.5
		AM1	*	P	M6	PN	15
							7 -
Most positive error		53.6		79.0		267	(.5 0.5
most negative error		-108.4	4	-30	0.6	-19	9.5
MSE		-6.7		-4	.3	21	0
MUE		21.5		27	7.3	53.0	
RMSD		29.9		47	.0	74	2
		20.0					_

Results for the PM6 parameterization set (N=43)

MSE	-12.0	1.0	7.2
MUE	26.2	16.2	47.5
RMSD	35.9	22.6	74.5

		AM1*		PI	M6	PM5			
Compound	Target		Error		Error		Error		
Koopmans' Theoren	n Ionization P	otentials for	r Nickel Cor	npounds	(eV)				
Ni ⁺	18.17	12.59	-5.58	12.28	-5.89	13.94	-4.23		
NiH	8.50	8.47	-0.03	8.38	-0.12	6.69	-1.81		
NiO	9.50	10.11	0.61	7.82	-1.68	11.33	1.83		
NiF ₂	11.50	11.82	0.32	9.00	-2.50	13.23	1.73		
NiCl	9.28	8.46	-0.82	6.61	-2.67	10.78	1.50		
NiCl ₂	11.20	11.95	0.75	10.85	-0.35	12.33	1.13		
NiCO	7.30	7.30	0.00	7.88	0.58	8.52	1.22		
Ni(CO) ₂	7.79	8.13	0.34	8.12	0.33	9.02	1.23		
Ni(CO) ₃	7.69	8.89	1.20	8.14	0.45	9.69	2.00		
Ni(CO) ₄	8.72	9.41	0.69	8.06	-0.66	10.07	1.35		
Ni(Cp) ₂	6.51	9.06	2.55	7.02	0.51	8.63	2.12		
	M6	PI	<i>l</i> 15						
N=11									
MSE		0.0	00	-1.	.09	0.1	73		
MUE		1.1	1.17 1.43				1.83		
Dipole Moments for	Nickel Compo	ounds (Deb	ye)						
NiH	2.40	3.16	0.76	0.33	-2.07	0.09	-2.31		
NiH ⁺	0.83	4.24	3.41	0.77	-0.06	1.66	0.83		
NiH ₃	3.75	5.03	1.28	0.11	-3.64	0.32	-3.43		
NiO	4.00	5.97	1.97	9.37	5.37	4.68	0.68		
NiO ⁻	3.33	0.16	-3.17	2.15	-1.18	4.05	0.72		
Ni(OH) ₂ .(H ₂ O) ₂ cis	3.50	3.02	-0.48	1.72	-1.78	4.90	1.40		
NiCO	3.35	3.95	0.60	0.81	-2.54	1.45	-1.90		
NiF	4.49	2.47	-2.02	3.19	-1.30	3.22	-1.27		
NiCH₃F	3.59	1.06	-2.54	3.04	-0.55	2.78	-0.82		
NiOF ₂	1.67	0.98	-0.69	2.58	0.91	3.46	1.79		
NiF ₂ .(H ₂ O) ₂ cis	6.48	3.22	-3.26	5.48	-1.00	8.56	2.08		
NiCI	4.39	2.97	-1.42	2.95	-1.44	5.81	1.42		
NiCH ₃ CI	4.39	1.72	-2.67	3.85	-0.54	5.27	0.88		
NiCl ₂ O	1.40	0.87	-0.54	0.89	-0.51	0.14	-1.26		
NiCl ₂ .(H ₂ O) ₂ cis	6.70	3.16	-3.54	3.63	-3.07	0.14	-6.56		
		AM	1*	P	/ 6	PM5			
N=15						-			
MSE		-0.	82	-0.	89	-0.	52		
MUE		1.8	39	1.1	73	1.8	32		

Table 6 Calculated AM1*, PM6 and PM5 Koopmans' theorem ionization potentials and dipole moments for nickel-containing compounds. The errors are color coded as follows: green up to 0.5 eV or 0.5 Debye; yellow between 0.5 and 1.0; pink larger than 1.0

 Table 7
 Calculated AM1*, PM6, and PM5 bond lengths and angles for nickel-containing compounds. The codenames within parentheses indicate the CSD-names of the compounds. The errors are color coded

as follows: green up to 0.05 Å or 0.5°; yellow between 0.05–0.1 Å or 0.5–1.0°; pink larger than 0.1 Å or 1°

				AM1*		PM6		PM5	
Compound	Variable	Target		Error		Error		Error	
NiH	Ni-H	1.61	1.64	0.03	1.71	0.10	3.09	1.47	
NiH⁺	Ni-H	1.44	1.63	0.19	1.70	0.26	2.33	0.89	
NiH ₂	Ni-H	1.64	1.64	-0.01	1.84	0.20	3.16	1.52	
-	H-Ni-H	180.0	180.0	0.0	180.0	0.0	180.0	0.0	
NiH ₃	Ni-H	1.82	1.88	0.06	2.73	0.91	3.33	1.51	
·	Ni-H(2)	1.52	1.64	0.13	1.70	0.18	3.00	1.48	
	H-Ni-H	167.7	168.7	0.9	171.9	4.2	173.2	5.5	
	H-Ni-H	24.5	22.6	-1.9	14.1	-10.4	13.6	-10.9	
Ni(CN) ₄ ²⁻	Ni-C	1.89	1.83	-0.06	1.84	-0.05	1.87	-0.02	
()4	C#N	1.19	1.17	-0.02	1.17	-0.02	1.17	-0.02	
Ni(CN)₅ ^{3−}	Ni-C(ap)	2.17	2.01	-0.16	1.92	-0.25	2.34	0.17	
()5	Ni-C(ba)	1.87	1.84	-0.03	1.84	-0.03	2.27	0.40	
NiCO	Ni-C	1.67	1.83	0.16	1.69	0.01	1.71	0.04	
Ni(CO)	Ni-C	1.84	1.90	0.06	1.75	-0.09	1.77	-0.08	
	C-Ni-C	180.0	180.0	0.0	180.0	0.0	180.0	0.0	
Ni(CO)_	Ni-C	1 76	1 92	0.16	1 75	-0.01	1 84	0.08	
	C-Ni-C	180.0	163.6	-16.4	180.0	0.01	180.0	0.0	
Ni(CO)	Ni-C	1 82	1 90	0.08	1 78	-0.04	1 79	-0.03	
11(00)3	C-Ni-C	120.0	120.0	0.0	120.0	0.04	120.0	0.00	
Ni(CO).⁻	Ni-C	1 79	1 87	0.0	1 81	0.0	1 87	0.0	
11(00)3	C-Ni-C	120.0	120.0	0.0	1/7 7	27.7	103.8	-16.2	
Ni(CO)		1 85	1 02	0.07	1 91	-0.04	1 92	-0.04	
		109.5	100 5	0.07	100 5	0.0-	100 5	-0.0-	
Ni(NH2)	Ni-N	1 81	1 96	0.0	1 83	0.0	1 83	0.0	
	NI-NI-NI	180.0	170.0	-0.1	180.0	0.02	168 /	-11.6	
		100.0	111.0	-0.1	100.0	1.6	100.4	-11.0	
Ni(NH) ²⁺		2.00	107	-13.7	1 06	-1.0	1 07	0.02	
		2.00	2.06	-0.03	1.90	-0.04	1.97	-0.03	
NiC N H^{2+} (Ni(II)(ap))		2.10	2.00	0.10	2.00	0.00	2.00	0.70	
$NiC N \sqcup {}^{2+} (AEAMNI10)$		2.19	2.10	-0.04	2.09	-0.10	2.50	0.31	
$MC_8N_6\Pi_{26}$ (AEAWINITO)		2.14	2.14	0.00	2.05	-0.09	2.00	0.39	
		2.03	2.03	-0.02	05.0	-0.07	2.55	20.2	
NiC N H (Nickel Phthaleovenine)		1 02	04.1	2.5	1 02.9	4.3	101.9	20.3	
		1.92	2.03	0.11	1.90	0.01	1.99	0.07	
NI(CO)3NO		1.01	2.00	0.10	1.01	0.00	2.20	-0.02	
		1.00	2.09	0.21	102.6	0.00	3.20 102.2	5.4	
		1.04	0.04	-2.1	102.0	-0.0	0.44	-5.4	
$MC_{13}MT_{17}O_4$ (VANSUI)		1.94	2.04	0.10	1.92	-0.02	2.44	0.00	
		1.97	2.07	0.10	1076	-0.04	100 5	0.01	
		1 00	2 00	2.3	107.0	0.05	129.0	-0.3	
		1.99	2.00	0.09	1.94	-0.05	2.00	0.30	
$NIC_8N_4\Pi_{14}O_4$ (NIMOLOTO)		1.00	2.05	0.20	1.00	0.03	2.07	0.02	
Nio		03.1	1.00	-1.4	04.0	1.5	1 00	-7.7	
	NI-O	1.07	1.00	-0.01	1.02	-0.04	1.00	-0.07	
	NI-O	1.68	1.65	-0.03	1.73	0.05	1.63	-0.05	
		1.67	1.68	0.02	1.62	-0.05	1.65	-0.02	
NI(OH)		180.0	1 00	0.0	180.0	0.0	180.0	0.0	
NI(UH) ₂		1./5	1.82	0.07	1.73	-0.02	1.79	0.04	
	U-H	0.99	0.96	-0.03	0.84	-0.15	0.97	-0.02	
$NI(UH)_2.(H_2U)_2 CIS$	NI-O	2.01	2.01	0.00	1.94	-0.07	2.07	0.06	
	NI-O	1.83	1.84	0.01	1.88	0.05	1.77	-0.07	
$NI(OH)_2.(H_2O)_2$ trans	NI-O	1.88	1.85	-0.03	1.85	-0.03	1.80	-0.08	
	NI-O	1.94	2.12	0.18	2.12	0.18	2.08	0.14	
$NI(OH).(H_2O)_3$	Ni-O	1.93	2.01	0.08	1.97	0.04	2.05	0.12	

			AM1*		PM6		PM5	
Compound	Variable	Target		Error		Error		Error
	Ni-O	1.80	1.82	0.02	1.83	0.03	1.76	-0.05
$Ni(H_2O)_4^{2+}$	Ni-O	1.90	2.04	0.14	2.06	0.16	2.03	0.13
$Ni(H_2O)_6^{2+}$	Ni-O	2.09	2.10	0.01	2.10	0.01	2.04	-0.05
NiH ₁₂ O ₆ ²⁺ (JERNID)	Ni-O	2.03	2.09	0.06	2.11	0.08	2.03	0.00
NIC ₁₀ H ₁₈ O ₆ (AQACNI)	Ni-O	2.01	2.03	0.02	2.00	-0.01	1.87	-0.14
	O-Ni-O	91.6	95.9	4.3	90.7	-1.0	80.4	-11.2
	Ni-O(H2)	2.09	2.15	0.06	2.13	0.04	2.18	0.09
NiF	Ni-F	1.77	1.81	0.04	1.74	-0.03	1.59	-0.18
NiF ₂	Ni-F	1.74	1.79	0.05	1.67	-0.07	1.59	-0.15
	F-Ni-F	180.0	180.0	0.0	180.0	0.0	180.0	0.0
NiF ₆ ²⁻	Ni-F	1.70	1.79	0.09	1.71	0.01	1.70	0.00
NiF ₆ ^{4–}	Ni-F	1.90	1.83	-0.07	1.91	0.01	1.71	-0.19
NiCH₃F	Ni-F	1.73	1.73	0.00	1.65	-0.08	1.56	-0.17
	Ni-C	1.86	1.93	0.07	1.94	0.08	1.87	0.01
	F-Ni-C	103.7	180.0	76.3	107.6	3.9	107.2	3.5
NiOF ₂	Ni=O	1.61	1.69	0.08	1.52	-0.09	1.66	0.05
	Ni-F	1.73	1.72	-0.01	1.66	-0.07	1.57	-0.16
	O=Ni-F	117.7	112.1	-5.6	136.5	18.8	107.7	-10.1
NiF ₂ .(H ₂ O) ₂ cis	Ni-O	1.97	2.04	0.07	1.97	0.00	2.09	0.12
	Ni-F	1.80	1.75	-0.05	1.68	-0.12	1.71	-0.10
NiF ₂ .(H ₂ O) ₂ trans	Ni-O	1.93	1.87	-0.06	2.09	0.16	2.06	0.13
	Ni-F	1.81	1.75	-0.06	1.69	-0.12	1.71	-0.10
NiC ₃ H ₈ O ₂ F ₂	Ni-O	2.02	2.17	0.15	1.93	-0.09	2.01	-0.01
	O-Ni-O	67.6	60.1	-7.5	74.5	6.9	67.3	-0.3
	Ni-F	1.77	1.73	-0.04	1.68	-0.09	1.59	-0.18
	F-Ni-O	95.8	95.6	-0.2	98.4	2.6	97.3	1.5
	F-Ni-O-O	174.8	173.6	-1.3	175.6	0.7	175.5	0.7
NiAlH ₂	Ni-Al	2.33	2.33	0.00	2.25	-0.09	2.41	0.08
	Ni-Al-H	122.1	117.3	-4.9	120.0	-2.1	113.7	-8.4
HNiAIH ₂	Ni-Al	2.52	2.36	-0.16	2.24	-0.28	2.57	0.05
	Ni-H	1.58	1.63	0.06	2.56	0.99	2.22	0.64
	H-Ni-Al	180.0	179.9	-0.1	180.0	0.0	179.9	-0.1
	Ni-Al-H	123.3	122.3	-1.0	120.1	-3.2	116.4	-6.9
NiSiH ₃	Ni-Si	2.26	2.26	0.00	2.55	0.29	2.40	0.14
	Ni-Si-H	111.8	107.5	-4.3	109.0	-2.8	107.1	-4.7
HNiSiH₃	Ni-H	1.55	1.64	0.09	2.43	0.88	2.22	0.67
	Ni-Si	2.38	2.35	-0.03	2.56	0.18	2.51	0.13
	Ni-Si-H	113.3	111.3	-2.0	109.2	-4.1	108.9	-4.4
	H-Ni-Si	180.0	179.9	-0.1	179.9	-0.1	180.0	0.0
NiSi ₂ C ₁₄ P ₂ H ₄₀ (DILDAD)	Ni-P	2.16	2.28	0.12	2.24	0.08	2.09	-0.08
	Ni-Si	3.19	3.20	0.01	3.21	0.02	3.08	-0.11
	Ni-C	2.07	1.99	-0.08	2.05	-0.02	1.93	-0.14
HNiPH ₂	Ni-H	1.45	1.63	0.19	1.68	0.24	3.07	1.62
	Ni-P	2.14	2.25	0.11	2.20	0.06	2.29	0.15
	Ni-P-H	102.5	88.5	-14.0	101.4	-1.1	116.1	13.6
Ni ₂ PH	Ni-P	2.04	2.10	0.06	2.17	0.14	1.94	-0.10
_	Ni-P-H	109.0	114.4	5.4	116.0	7.0	137.9	29.0
Ni(PH ₃) ₄ ²⁺	Ni-P	2.25	2.26	0.01	2.26	0.01	2.26	0.01
NiS	Ni-S	2.00	2.10	0.10	1.92	-0.09	1.94	-0.06
NiSH	Ni-S	2.15	1.96	-0.19	2.15	0.00	2.11	-0.04
	Ni-S-H	94.0	81.4	-12.7	98.5	4.5	104.3	10.3
NiSH ₂	Ni-S	2.08	2.08	0.00	2.12	0.04	2.39	0.30
	Ni-H	1.45	1.64	0.19	1.68	0.24	3.01	1.56
	Ni-S-H	94.9	91.2	-3.7	100.5	5.6	104.7	9.8

J	Mol	Model	(2010)	16:29-47
---	-----	-------	--------	----------

 Table 7 (continued)

			AM1*		PM6		PM5	
Compound	Variable	Target		Error		Error		Error
Ni(H ₂ S) ₄ ²⁺	Ni-S	2.27	2.22	-0.05	2.22	-0.05	2.22	-0.05
$NiC_6N_6H_{16}S_2$ (Ni(II)(en) ₂ (NCS) ₂)	Ni-N(en)	2.10	2.16	0.06	1.97	-0.13	2.66	0.56
	Ni-N(NĆS)	2.15	2.04	-0.11	2.44	0.29	3.38	1.23
	N-C	1.20	1.18	-0.02	1.17	-0.03	1.17	-0.03
	Ni-N-C	140.0	157.4	17.4	88.2	-51.8	100.1	-39.9
	C-S	1.64	1.65	0.01	1.65	0.01	1.65	0.01
$NiC_8N_2H_{14}S_2$ (BAEINI)	Ni-N	1.85	2.05	0.20	1.88	0.03	1.90	0.04
-0217-2()	N-Ni-N	82.9	74.3	-8.6	86.7	3.8	93.3	10.4
	Ni-S	2.17	2.19	0.02	2.14	-0.03	2.25	0.08
$NiC_{11}N_{2}H_{21}S_{2}O_{2}^{+}$ (Square, 2S and 2N)	Ni-S	2 20	2.26	0.06	2 26	0.06	2 30	0.10
	S-Ni-S	93.5	100.0	6.5	91.9	-1.6	132.2	38.7
	Ni-N	1 93	2 09	0.16	1 94	0.01	3.01	1.08
	N-Ni-S	84 7	84.0	-0.7	83.2	-1.5	42.9	-41.8
	N-Ni-S-S	-176.5	-173 3	3.2	-183.0	-7.5	-119.7	56.8
NiC ₁₁ N ₂ H ₂₁ S ₂ O ₂ ⁺ (Square, 2S and 2N	N-N-0-0	-170.5	-170.0	0.2	-100.9	-7.5	-113.7	50.0
for Ni-S-C)	C-S-Ni	106.5	99.6	-6.9	105.1	-1.3	83.0	-23.5
Ni((CH ₃) ₂ S) ₂ F ₂ cis	Ni-S	2.24	2.30	0.06	2.12	-0.12	2.35	0.11
	S-Ni-S	93.2	85.9	-7.3	94.5	1.4	75.4	-17.7
	Ni-F	1.82	1.75	-0.07	1.71	-0.11	1.61	-0.21
	F-Ni-S	87.6	93.6	6.0	87.2	-0.4	95.8	82
Ni((CH _a) _a S) _a E _a trans	Ni-S	2 23	2 33	0.10	2 12	-0.11	2 28	0.05
	Ni-F	1.82	1 76	-0.06	1 68	-0.14	1.68	-0.14
	F-Ni-S	89.3	93.7	4.4	87.9	-1 4	92.4	31
NiC-Hasse (Ni 2S and 2F)	Ni-S	2 24	2.36	0.12	2 15	-0.09	2.39	0.15
	S-Ni-S	91.0	94.2	32	88.0	-3.1	129.8	38.8
	Ni-F	1 81	1 78	-0.03	1 68	-0.13	1 65	-0.17
	F-Ni-S	88.7	105.1	16.4	92.5	3.8	100 4	11 7
	F-Ni-S-S	176.4	130.0	-46.5	173.1	-3.4	111 5	-65.0
NIC-P-H-S- (KUSLOZ)	Ni-S	2 18	2 11	-0.07	2 24	0.06	2 18	0.00
	Ni-P	2.10	2.11	0.07	2.24	0.00	2.10	-0.08
	P-Ni-S	88.0	80.6	0.00	87.0	-1.8	2.00 96 7	7.8
	Ni-S	2 13	2 15	0.02	2 13	0.00	2 31	0.18
		2.10	2.10	0.02	2.10	0.00	2.01	1 22
	S_Ni_S	2.14	2.23	0.09	2.20	0.09	01 7	-3.3
		1 95	1 04	2.0	1 00	0.9	1 0/	-0.0
		1.00	0.00	0.09	0.10	-0.03	0.04	-0.01
NI(N ₂ S ₂ Π) ₂		2.20	1 60	0.02	2.10	-0.02	2.24	0.04
		1.00	1.00	0.00	1.01	-0.07	1.00	-0.02
		1.59	1.01	0.02	1.03	0.04	1.58	-0.01
		1.00	2.11	0.45	1.70	0.04	2.51	0.00
		1.03	0.99	-0.05	1.04	0.01	1.01	-0.02
$NIC_8N_4S_4$ (TROPNJ)		2.14	2.20	0.06	2.26	0.12	2.25	0.11
	S-INI-S	92.4	92.7	0.2	91.3	-1.1	97.7	5.3
$NIC_4S_4U_4$ (IUXNIA)	NI-S	2.19	2.24	0.05	2.22	0.03	2.23	0.04
	S-INI-S	92.5	96.8	4.4	89.5	-3.0	83.7	-8.8
$NIC_{10}N_2H_{20}S_6$ (201VU2)	NI-S	2.44	2.41	-0.03	2.33	-0.11	2.37	-0.07
	S-NI-S	87.6	90.1	2.5	86.2	-1.4	/3.5	-14.2
N'OI	NI-N	2.02	2.14	0.12	1.93	-0.09	2.44	0.42
NICI	NI-CI	2.17	2.18	0.01	2.14	-0.03	2.20	0.03
NICI ₂	Ni-Cl	2.11	2.15	0.04	2.06	-0.05	2.13	0.02
	CI-Ni-CI	180.0	180.0	0.0	180.0	0.0	180.0	0.0
NiCl ₄ ²⁻	Ni-Cl	2.29	2.14	-0.15	2.33	0.04	2.30	0.01
NiCH ₃ Cl	Ni-Cl	2.09	2.16	0.07	2.07	-0.02	2.18	0.09
	Ni-C	1.94	1.93	-0.01	1.92	-0.02	1.89	-0.05
	CI-Ni-C	163.6	179.9	16.4	102.0	-61.5	179.1	15.6

 Table 7 (continued)

			AM1*		PM6		PM5	
Compound	Variable	Target		Error		Error		Error
NiCl.(H ₂ O) ₃ ⁺	Ni-O	1.93	2.00	0.07	2.06	0.13	2.05	0.12
	Ni-O	1.99	2.00	0.01	2.05	0.06	2.05	0.06
	Ni-Cl	2.13	2.17	0.04	2.12	-0.01	2.11	-0.02
NiCl ₂ O	Ni=O	1.62	1.78	0.16	1.58	-0.04	1.60	-0.02
	Ni-Cl	2.08	2.19	0.11	2.03	-0.05	2.10	0.02
	O=Ni-Cl	116.2	109.3	-6.9	114.5	-1.7	108.8	-7.4
NiCl ₂ .(H ₂ O) ₂ cis	Ni-O	2.01	2.04	0.03	2.09	0.08	2.01	0.00
	Ni-Cl	2.16	2.16	0.00	2.18	0.02	2.16	0.00
NiCl ₂ .(H ₂ O) ₂ trans	Ni-O	1.92	2.04	0.12	2.05	0.13	2.06	0.14
	Ni-Cl	2.20	2.17	-0.03	2.14	-0.06	2.16	-0.04
Ni((CH ₃) ₂ S) ₂ Cl ₂ cis	Ni-S	2.27	2.20	-0.07	2.14	-0.13	2.27	0.00
	S-Ni-S	87.3	100.2	12.9	87.6	0.3	89.8	2.5
	Ni-Cl	2.19	2.17	-0.02	2.16	-0.03	2.16	-0.03
	CI-Ni-S	173.7	167.5	-6.2	177.6	3.9	135.5	-38.2
Ni((CH ₃) ₂ S) ₂ Cl ₂ trans	Ni-S	2.26	2.20	-0.06	2.15	-0.11	2.22	-0.04
	Ni-Cl	2.20	2.17	-0.03	2.16	-0.04	2.19	-0.01
	CI-Ni-S	87.4	87.2	-0.2	85.7	-1.7	79.3	-8.1
NiC ₇ H ₁₆ S ₂ Cl ₂ (Ni 2S and 2Cl)	Ni-S	2.27	2.24	-0.03	2.28	0.01	2.31	0.04
	S-Ni-S	87.7	110.1	22.4	98.0	10.3	113.4	25.6
	Ni-Cl	2.19	2.20	0.01	2.23	0.04	2.22	0.03
	CI-Ni-S	173.8	173.6	-0.2	104.7	-69.1	102.7	-71.1
	CI-Ni-S-S	-79.9	-97.4	-17.5	-107.7	-27.8	-110.0	-30.1
NiCl ₃ .H ₂ O ⁻	Ni-O	2.03	2.13	0.10	2.13	0.10	2.12	0.09
	Ni-Cl	2.17	2.23	0.06	2.23	0.06	2.20	0.03
	Ni-Cl	2.26	2.29	0.03	2.30	0.04	2.23	-0.03
NiTi	Ni-Ti	2.01	2.51	0.50	2.53	0.52	13.40	11.39
NiV	Ni-V	2.43	2.43	0.00	2.66	0.23	2.43	0.00
NiCr	Ni-Cr	2.13	2.21	0.08	2.67	0.54	1.40	-0.73
Ni ₂	Ni-Ni	2.47	2.48	0.00	1.47	-1.00	2.45	-0.02
Ni ₂	Ni-Ni	2.52	2.52	0.00	1.79	-0.73	1.99	-0.54
Ni ₂ ⁺	Ni-Ni	2.52	2.50	-0.02	1.65	-0.87	2.57	0.04
$Ni_2(C_5H_5)_2(CO)_2$	Ni-Ni	2.43	2.86	0.43	2.38	-0.05	2.85	0.42
Ni ₃ (C ₅ H ₅) ₃ (CO) ₂	Ni-Ni	2.36	3.44	1.08	2.35	-0.01	2.70	0.34
	Ni-C(Cp)	2.17	2.18	0.01	2.12	-0.05	1.90	-0.27
	Ni-C(C=O)	1.91	2.01	0.10	1.87	-0.04	2.11	0.20
NiCu	Ni-Cu	2.26	2.44	0.18	2.71	0.45	1.91	-0.35
NiZn	Ni-Zn	2.22	2.35	0.13	1.97	-0.26	2.88	0.66
NiBr	Ni-Br	2.28	2.27	0.00	2.20	-0.07	2.19	-0.08
NiBr ₂	Ni-Br	2.22	2.35	0.13	2.18	-0.04	2.21	-0.01
NiCH₃Br	Ni-Br	2.19	2.36	0.17	2.22	0.03	2.18	-0.01
	Ni-C	1.85	1.93	0.08	1.91	0.06	1.87	0.02
	Br-Ni-C	107.7	179.0	71.4	103.4	-4.3	179.4	71.8
NiBr ₂ O	Ni=O	1.62	1.58	-0.05	1.73	0.11	1.60	-0.02
	Ni-Br	2.22	2.18	-0.05	2.37	0.15	2.54	0.32
	O=Ni-Br	115.1	144.0	28.9	52.1	-63.0	123.0	7.9
NiC ₃ H ₈ Br ₂ O ₂ (Ni 2O and 2Br)	Ni-O	2.07	2.18	0.11	2.03	-0.04	2.02	-0.05
	O-Ni-O	65.8	59.2	-6.6	68.0	2.2	66.1	0.3
	Ni-Br	2.26	2.37	0.11	2.30	0.04	2.24	-0.02
	Br-Ni-O	164.3	148.1	-16.2	91.0	-73.3	105.0	-59.3
	Br-Ni-O-O	-16.2	-17.5	-1.3	-109.73	-93.6	-106.7	-90.6
	Br-Ni-O	98.9	90.5	-8.4	102.4	3.5	94.5	-4.3
Ni(SH)Br	Ni-Br	2.24	2.35	0.11	2.23	-0.01	2.14	-0.10
	Ni-S	2.09	2.06	-0.03	2.13	0.04	2.09	0.00

Table 7 (continued)

Compound Variable Target Error Error Error Error Ni(PH ₂)(NH ₂)(SH)Br ²⁻ Ni-P 2.30 2.29 -0.01 2.28 -0.02 2.25 -0.0 Ni-Br 2.33 2.44 0.11 2.25 -0.08 2.33 0.0 Ni-S 2.20 2.10 -0.10 2.19 -0.01 2.23 0.0 Ni-N 1.83 2.03 0.20 1.87 0.04 2.10 0.0 Ni-N 1.83 2.03 0.20 1.87 0.04 2.10 0.0 Ni-N 1.83 2.03 0.20 1.87 0.04 2.10 0.0 NiC ₈ N ₂ H ₂₀ S ₃ Br ⁺ (BRUCUB) Ni-Br 2.58 2.68 0.10 2.43 -0.15 2.25 -0. Ni-N 2.07 2.16 0.09 2.07 0.00 2.69 0. Ni-Ni-Br 89.9 94.1 4.2 70.2 -19.8 88.3 -1 <	or .05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.05
Ni-Br 2.33 2.44 0.11 2.25 -0.08 2.33 0. Ni-S 2.20 2.10 -0.10 2.19 -0.01 2.23 0. Ni-N 1.83 2.03 0.20 1.87 0.04 2.10 0. Ni-R 2.58 2.68 0.10 2.43 -0.15 2.25 -0.0 Ni-N 2.58 2.68 0.10 2.43 -0.15 2.25 -0.0 Ni-N 2.07 2.16 0.09 2.07 0.00 2.69 0. Ni-N 2.07 2.16 0.09 2.07 0.00 2.69 0. N-Ni-Br 89.9 94.1 4.2 70.2 -19.8 88.3 -7 Ni-S 2.39 2.31 -0.09 2.30 -0.09 2.28 -0. S-Ni-Br 89.4 62.5 -26.9 102.3 13.0 81.8 -7 Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.39 2.31 -0.08 2.31 2.02 0. S-Ni-S	
Ni-S 2.20 2.10 -0.10 2.19 -0.01 2.23 0.0 Ni-N 1.83 2.03 0.20 1.87 0.04 2.10 0.0 NiC ₈ N ₂ H ₂₀ S ₃ Br ⁺ (BRUCUB) Ni-Br 2.58 2.68 0.10 2.43 -0.15 2.25 -0.0 Ni-N 2.07 2.16 0.09 2.07 0.00 2.69 0.0 N-Ni-Br 89.9 94.1 4.2 70.2 -19.8 88.3 -7 Ni-S 2.39 2.31 -0.09 2.30 -0.09 2.28 -0.0 S-Ni-Br 89.4 62.5 -26.9 102.3 13.0 81.8 -7 Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.29 2.21 -0.08 2.16 -0.13 2.29 0.1 S-Ni-S 86.3 95.6 9.3 82.7 -3.6 75.4 -1.1 Ni-Br 2.33 2.38 0.05 2.31 -0.02 2.21 -0. Br-Ni-S 173.8 172.4 -1.4 176.0 2.2 <t< th=""><td>0.00</td></t<>	0.00
Ni-N 1.83 2.03 0.20 1.87 0.04 2.10 0.0 NiC ₈ N ₂ H ₂₀ S ₃ Br ⁺ (BRUCUB) Ni-Br 2.58 2.68 0.10 2.43 -0.15 2.25 -0. Ni-N 2.07 2.16 0.09 2.07 0.00 2.69 0.0 Ni-N 2.07 2.16 0.09 2.07 0.00 2.69 0.0 Ni-Ni-Br 89.9 94.1 4.2 70.2 -19.8 88.3 -7 Ni-S 2.39 2.31 -0.09 2.30 -0.09 2.28 -0.0 S-Ni-Br 89.4 62.5 -26.9 102.3 13.0 81.8 -7 Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.29 2.21 -0.08 2.16 -0.13 2.29 0.1 S-Ni-S 86.3 95.6 9.3 82.7 -3.6 75.4 -1.1 Ni-Br 2.33 2.38 0.05 2.31 -0.02 2.21 -0.0	0.02
NiC ₈ N ₂ H ₂₀ S ₃ Br ⁺ (BRUCUB) Ni-Br 2.58 2.68 0.10 2.43 -0.15 2.25 -0. Ni-N 2.07 2.16 0.09 2.07 0.00 2.69 0.0 N-Ni-Br 89.9 94.1 4.2 70.2 -19.8 88.3 -7 Ni-S 2.39 2.31 -0.09 2.30 -0.09 2.28 0. S-Ni-Br 89.4 62.5 -26.9 102.3 13.0 81.8 -7 Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.29 2.21 -0.08 2.16 0.13 2.29 0. S-Ni-S 86.3 95.6 9.3 82.7 3.6 7.4 1.1 Ni-Br 2.33 2.38 0.05 2.31 -0.02 2.21 -0. Br-Ni-S 173.8 172.4 -1.4 176.0 2.2 172.3 -1	.27
Ni-N 2.07 2.16 0.09 2.07 0.00 2.69 0.0 N-Ni-Br 89.9 94.1 4.2 70.2 -19.8 88.3 Ni-S 2.39 2.31 -0.09 2.30 -0.09 2.28 -0. S-Ni-Br 89.4 62.5 -26.9 102.3 13.0 81.8 -7 Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.29 2.21 -0.08 2.16 -0.13 2.29 0.0 S-Ni-S 86.3 95.6 9.3 82.7 -3.6 75.4 -11 Ni-Br 2.33 2.38 0.05 2.31 -0.02 2.21 -0. Br-Ni-S 173.8 172.4 -1.4 176.0 2.2 172.3 -1	.33
N-Ni-Br 89.9 94.1 4.2 70.2 -19.8 88.3 Ni-S 2.39 2.31 -0.09 2.30 -0.09 2.30 2.28 -0. S-Ni-Br 89.4 62.5 -26.9 102.3 13.0 81.8 -7 Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.29 2.21 -0.08 2.16 -0.13 2.29 0.0 S-Ni-S 86.3 95.6 9.3 82.7 -3.6 75.4 -11 Ni-Br 2.33 2.38 0.05 2.31 -0.02 2.21 -0. Br-Ni-S 173.8 172.4 -1.4 176.0 2.2 172.3 -1	.62
Ni-S 2.39 2.31 -0.09 2.30 -0.09 2.28 -0.00 S-Ni-Br 89.4 62.5 -26.9 102.3 13.0 81.8 -7 Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.29 2.21 -0.08 2.16 -0.13 2.29 0.1 S-Ni-S 86.3 95.6 9.33 82.7 3.6 75.4 -11 Ni-Br 2.33 2.38 0.05 2.31 -0.02 2.21 -0. Br-Ni-S 173.8 172.4 -1.4 176.0 2.2 172.3 -1	1.6
S-Ni-Br 89.4 62.5 -26.9 102.3 13.0 81.8 -1 Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.29 2.21 -0.08 2.16 -0.13 2.29 0.1 S-Ni-S 86.3 95.6 9.3 82.7 -3.6 75.4 -11 Ni-Br 2.33 2.38 0.05 2.31 -0.02 2.21 -0.02 Br-Ni-S 173.8 172.4 -1.4 176.0 2.2 172.3 -1	.11
Ni((CH ₃) ₂ S) ₂ Br ₂ cis Ni-S 2.29 2.21 -0.08 2.16 -0.13 2.29 0. S-Ni-S 86.3 95.6 9.3 82.7 -3.6 75.4 -1 Ni-Br 2.33 2.38 0.05 2.31 -0.02 2.21 -0. Br-Ni-S 173.8 172.4 -1.4 176.0 2.2 172.3 -1	7.6
S-Ni-S86.395.69.382.7-3.675.4-1Ni-Br2.332.380.052.31-0.022.21-0.Br-Ni-S173.8172.4-1.4176.02.2172.3-1	0.00
Ni-Br2.332.380.052.31-0.022.21-0.Br-Ni-S173.8172.4-1.4176.02.2172.3-1	1.0
Br-Ni-S 173.8 172.4 -1.4 176.0 2.2 172.3 -	.12
	1.5
Ni((CH ₃) ₂ S) ₂ Br ₂ trans Ni-S 2.26 2.17 -0.09 2.15 -0.11 2.22 -0.	.04
Ni-Br 2.35 2.38 0.03 2.35 0.00 2.25 -0.	.10
Br-Ni-S 86.5 75.8 -10.7 84.3 -2.2 76.5 -10	0.1
NiC ₇ H ₁₆ S ₂ Br ₂ (Ni 2S and 2Br) Ni-S 2.28 2.26 -0.02 2.31 0.03 2.31 0.	0.03
S-Ni-S 81.9 106.5 24.6 90.4 8.5 115.0 33	3.1
Ni-Br 2.33 2.38 0.05 2.33 0.00 2.26 -0.	0.07
Br-Ni-S 94.0 99.5 5.5 106.3 12.3 83.9 -10	0.1
Br-Ni-S-S 179.8 136.1 -43.7 144.1 -35.8 118.4 -61	1.5
NiZr Ni-Zr 2.21 2.73 0.52 2.43 0.23 3.49 1.	.28
NiMo Ni-Mo 2.14 2.20 0.06 2.52 0.38 10.99 8.	.85
Nil Ni-I 2.39 2.20 -0.19 2.27 -0.12 2.34 -0.	0.05
Nil ₂ Ni-I 2.45 2.20 -0.25 2.37 -0.07 2.36 -0.	0.09
NiCH₃I Ni-I 2.39 2.31 -0.08 2.33 -0.06 2.34 -0.	0.05
Ni-C 1.85 1.93 <u>0.08</u> 1.91 <u>0.06</u> 1.86 0.	0.01
I-Ni-C 107.5 142.9 35.4 107.5 0.0 111.5	4.0
NilF ₃ ²⁻ Ni-F 1.88 1.76 -0.12 2.22 0.34 1.81 -0.	0.07
NilCl Ni-I 2.41 2.23 -0.18 2.33 -0.08 2.37 -0.	0.04
Ni-Cl 2.08 2.18 0.10 2.05 -0.03 2.11 0.	0.03
I-Ni-Cl 120.2 79.6 -40.6 113.4 -6.8 75.0 -45	.5.2
NiC ₃ H ₈ I ₂ O ₂ (Ni 2O and 2I) Ni-O $2.10 \ 2.10 \ 0.00 \ 2.02 \ -0.08 \ 1.99 \ -0.$).11
O-Ni-O 64.6 63.2 -1.4 69.4 4.8 67.7 3	3.2
Ni-I 2.47 2.29 -0.18 2.58 0.11 2.69 0.	.22
I-Ni-O 101.1 102.1 1.0 56.1 -45.0 110.2 S	9.1
I-Ni-O-O 176.5 176.1 -0.4 237.0 60.5 150.9 -28	:5.6
Ni((CH ₃) ₂ S) ₂ I ₂ cis Ni-S 2.29 2.16 -0.13 2.16 -0.13 2.26 -0.	1.03
S-Ni-S 85.1 100.0 14.9 80.2 -4.9 82.2 -2	2.9
Ni-I 2.56 2.29 -0.27 2.52 -0.04 2.46 -0.	.10
I-Ni-S 167.8 121.3 -46.5 172.7 4.9 173.6	5.8
Ni((CH ₃) ₂ S) ₂ I ₂ trans Ni-S $2.27 \ 2.18 \ -0.09 \ 2.13 \ -0.14 \ 2.20 \ -0.$	1.07
Ni-I 2.58 2.35 -0.23 2.53 -0.05 2.49 -0.	1.09
I-Ni-S 85.4 111.7 26.3 78.8 -6.6 68.9 -16	6.5
AM1* PM6 PM5	
MSE bond length 0.01 0.24	
MUE bond length 0.04 0.01 0.24	
N=80	
MSE bond angle 0.2 -5.1 -4.6	
MUE bond angle 10.2 10.7 15.9	

MUE bond angle

gives some additional outliers with the AM1* training set that decrease its statistical performance a little, whereas PM5 actually performs slightly better for the AM1* dataset than for the PM6 subset (but worse than the other two methods).

Ionization potentials and dipole moments

A comparison of the calculated and experimental Koopmans' theorem ionization potentials and dipole moments for the compounds containing nickel are shown in Table 6.

AM1* shows no systematic error trend in the reproduction of Koopmans' theorem ionization potentials of nickelcontaining compounds for the dataset used. PM6 underestimates ionization potentials to nickel compounds by 1.09 eV, whereas PM5 overestimates them by 0.73 eV. AM1* performs slightly better than PM6 (MUE=1.43 eV) and PM5 (1.83 eV) with an MUE of 1.17 eV.

The performance of the three methods is comparable for dipole moments. The mean unsigned errors vary in a narrow range from 1.73 (PM6) to 1.89 Debye (AM1*). The PM5 MUE is found to be 1.82 Debye. All three methods systematically underestimate dipole moments of nickel compounds. Mean signed errors are found to be -0.52, -0.82, and -0.89 Debye for PM5, AM1* and PM6, respectively. All the large AM1* errors are found for the compounds either contain original AM1 elements or chlorine.

Geometries

The geometrical parameters used to parameterize AM1* for nickel and a comparison of the AM1*, PM6 and PM5 results are shown in Table 7.

AM1* with a mean unsigned error of 0.09 Å performs slightly better than PM6 (MUE=0.11 Å) and far better than PM5 (MUE=0.33 Å) for bond lengths to nickel compounds. PM6 (MSE=0.01 Å) and AM1* (MSE=0.04 Å) show no significant systematic trend, whereas PM5 (MSE=0.24) seriously overestimates bond lengths to nickel.

The performance of AM1* for bond angles to nickel compounds is comparable to PM6 and better than PM5. The MUEs for AM1* and PM6 are 10.2° and 10.7° , respectively, and for PM5 15.9°. AM1* shows no significant systematic error with an MSE of 0.2° , whereas PM6 (MSE= -5.1°) and PM5 (MSE= -4.6°) predict the bond angles to be too small.

Discussion

Our new AM1* parameters for cobalt and nickel provide important additional elements especially for catalytic chemistry applications based on organometallic compounds of the two metals. As for our previous parameterizations, we have extended the range of the parameterization dataset and made it more reliable by including results from DFT calculations. For the training set used, AM1* parameterizations for cobalt and nickel give good energetic and electronic results. Additionally, AM1* performs very well for the structural properties.

As published NDDO-based semiempirical molecular orbital techniques that use d-orbitals, both AM1* and PM6 have very similar theoretical frameworks and provide a good opportunity to carry out comparative calculations for many different applications and provide good starting points for the reaction-specific local parameterizations. As for all semiempirical methods, AM1* and PM6 are likely to give large errors that were not revealed during parameterization. This is illustrated well by comparing their performance for the dataset used to parameterize PM6. The additional compounds in the AM1* dataset give slightly larger errors with PM6. The availability of two independently parameterized techniques of similar quality should, however, provide an additional validation possibility for semiempirical MO calculations on transition metal species.

Acknowledgments This work was supported by the Deutsche Forschungsgemeinschaft by an individual grant (Cl85/17-1) and as part of GK312 "Homogeneous and Heterogeneous Electron Transfer" and SFB583 "Redox-Active Metal Complexes: Control of Reactivity via Molecular Architecture". We thank Dr. Paul Winget, Dr. Bodo Martin, Dr. Cenk Selcuki, Dr. Matthias Hennemann and Anselm Horn for support with the parameterization database.

References

- Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408–414
- 2. Winget P, Clark T (2005) J Mol Model 11:439-456
- 3. Kavi H, Clark T (2007) J Mol Model 13:965-979
- 4. Kayi H, Clark T (2009) J Mol Model 15:295-308
- 5. Kayi H, Clark T (2009) J Mol Model 15 (in the press)
- Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909
- 7. Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089-4094
- 8. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899-4907
- Thiel W (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of Computational Chemistry. Wiley, Chichester, p 1599
- 10. Stewart JJP (1989) J Comp Chem 10:209-220
- 11. Stewart JJP (1989) J Comp Chem 10:221-264
- Stewart JJP (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of Computational Chemistry. Wiley, Chichester, p 2080
- Shubina TE, Marbach H, Flechtner K, Kretschmann A, Jux N, Buchner F, Steinrück HP, Clark T, Gottfried JM (2007) J Am Chem Soc 129:9476–9483
- Bennett BL, Shannon White S, Brittany Hodges B, Dane Rodgers D, Ade Lau A, Roddick DM (2003) J Organomet Chem 679:65–71

- 15. Winget P, Clark T (2004) J Comp Chem 25:725-733
- 16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc, Wallingford, CT
- Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern Theoretical Chemistry, Vol 3. Plenum, New York, pp 1–28
- 18. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):270-283

- 19. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):284-298
- 20. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):299-310
- 21. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265-3269
- 22. Becke AD (1988) Phys Rev A 38:3098
- 23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
- 24. Becke AD (1993) J Chem Phys 98:5648-5652
- Linstrom P, Mallard W (2003) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology: Gaithersburg, MD, p 20899. (http:// webbook.nist.gov/)
- 26. Stewart JJP, http://openmopac.net/files.html
- Cambridge Structural Database, Version 5.28 (2007) Cambridge Crystallographic Data Centre, Cambridge, UK
- Clark T, Alex A, Beck B, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2008) Computer-Chemie-Centrum. Erlangen, Universität Erlangen-Nürnberg
- 29. Stewart JJP (2002) LinMOPAC2.0. FQS Poland, Krakow
- Stewart JJP (2007) MOPAC2007. Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net
- 31. Stewart JJP (2007) J Mol Model 13:1173-1213